Patents by Inventor Gaylord D. Smith
Gaylord D. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10260129Abstract: A high temperature, high strength Ni—Co—Cr alloy is provided. The alloy includes, in weight percent (wt. %): 23.5 to 25.5% Cr, 15.0 to 22.0% Co, 1.1 to 2.0% Al, 1.0 to 1.8% Ti, 0.95 to 2.2% Nb, less than 1.0% Mo, less than 1.0% Mn, up to 0.24% Si, less than 3.0% Fe, less than 0.3% Ta, less than 0.3% W, 0.005 to 0.08% C, 0.01 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, and a balance of Ni plus trace impurities.Type: GrantFiled: August 1, 2018Date of Patent: April 16, 2019Assignee: Huntington Alloys CorporationInventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
-
Publication number: 20180340242Abstract: A high temperature, high strength Ni—Co—Cr alloy is provided. The alloy includes, in weight percent (wt. %): 23.5 to 25.5% Cr, 15.0 to 22.0% Co, 1.1 to 2.0% Al, 1.0 to 1.8% Ti, 0.95 to 2.2% Nb, less than 1.0% Mo, less than 1.0% Mn, up to 0.24% Si, less than 3.0% Fe, less than 0.3% Ta, less than 0.3% W, 0.005 to 0.08% C, 0.01 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, and a balance of Ni plus trace impurities.Type: ApplicationFiled: August 1, 2018Publication date: November 29, 2018Applicant: Huntington Alloys CorporationInventors: Brian A. BAKER, Gaylord D. Smith, Ronald D. Gollihue
-
Patent number: 10041153Abstract: A high temperature, high strength Ni—Co—Cr alloy possessing essentially fissure-free weldability for long-life service at 538° C. to 816° C. contains in % by weight about: 23.5 to 25.5% Cr, 15-22% Co, 1.1 to 2.0% Al, 1.0 to 1.8 % Ti, 0.95 to 2.2% Nb, less than 1.0% Mo, less than 1.0% Mn, less than 0.3% Si, less than 3% Fe, less than 0.3% Ta, less than 0.3% W, 0.005 to 0.08% C, 0.01 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, 0.005% to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities. The strength and stability is assured at 760° C. when the Al/Ti ratio is constrained to between 0.95 and 1.25. Further, the sum of Al+Ti is constrained to between 2.25 and 3.0. The upper limits for Nb and Si are defined by the relationship: (% Nb+0.95)+3.32(% Si)<3.16.Type: GrantFiled: April 8, 2009Date of Patent: August 7, 2018Assignee: Huntington Alloys CorporationInventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
-
Publication number: 20130206274Abstract: A method of roll-forming sheet or plate into a round hollow, welding the round hollow with a welding alloy that matches the alloy of the round hollow to form a welded pipe, annealing the welded pipe at a minimum of 1950° F. to provide a carbide-free microstructure, ultrasonic inspecting to assure sound welds, and cold-working the annealed and inspected pipe via drawing or pilgering to the desired tensile strength. The compositional range alloys suitable for use in the method of the present invention in weight % is: 25.0-65.0% Ni, 15.0-30.0% Cr, 0-18.0% Mo, 2.5-48.0% Fe, 0-5.0% Cu, 0-5.0% Mn, 0-5.0% Nb, 0-2.0 Ti, 0-5.0% W, 0-1.0% Si, and 0.005-0.1% C. The process has been most preferably optimized for an alloy range consisting of 32.0-46% Ni, 19.5-28.0% Cr, 18.0-40.0% Fe, 3.0-8.0% Mo, 1.0-3.0% Cu, 0.6-1.2% Ti, 0.5-2.0% Mn, 0.1-0.5% Si, 0.01-0.08% C. The present invention also includes the pipe made thereby.Type: ApplicationFiled: July 19, 2011Publication date: August 15, 2013Applicant: HUNTINGTON ALLOYS CORPORATIONInventors: Gaylord D. Smith, Ronald D. Gollihue, Brian A. Baker, Lewis E. Shoemaker
-
Publication number: 20090321405Abstract: A nickel (Ni), chromium (Cr), cobalt (Co), iron (Fe), molybdenum (Mo), manganese (Mn), aluminum (Al), titanium (Ti), niobium (Nb), silicon (Si) welding alloy, articles made therefrom for use in producing weldments and methods for producing these weldments. The welding alloy contains in % by weight about: 23.5 to 25.5% Cr, 15 to 22% Co, up to 3% Fe, up to 1% Mo, up to 1% Mn, 1.1 to 2.0% Al, 0.8 to 1.8% Ti, 0.8 to 2.2% Nb, 0.05 to 0.28% Si, up to 0.3% Ta, up to 0.3% W, 0.005 to 0.08% C, 0.001 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, up to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities.Type: ApplicationFiled: June 22, 2009Publication date: December 31, 2009Applicant: HUNTINGTON ALLOYS CORPORATIONInventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
-
Publication number: 20090257908Abstract: A high temperature, high strength Ni—Co—Cr alloy possessing essentially fissure-free weldability for long-life service at 538° C. to 816° C. contains in % by weight about: 23.5 to 25.5% Cr, 15-22% Co, 1.1 to 2.0% Al, 1.0 to 1.8 % Ti, 0.95 to 2.2% Nb, less than 1.0% Mo, less than 1.0% Mn, less than 0.3% Si, less than 3% Fe, less than 0.3% Ta, less than 0.3% W, 0.005 to 0.08% C, 0.01 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, 0.005% to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities. The strength and stability is assured at 760° C. when the Al/Ti ratio is constrained to between 0.95 and 1.25. Further, the sum of Al+Ti is constrained to between 2.25 and 3.0. The upper limits for Nb and Si are defined by the relationship: (% Nb+0.95)+3.32(% Si)<3.16.Type: ApplicationFiled: April 8, 2009Publication date: October 15, 2009Applicant: HUNTINGTON ALLOYS CORPORATIONInventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
-
Patent number: 6537393Abstract: A nickel base alloy for high temperature thermal processing hardware requiring ultra-low spallation and metal loss rates in oxidizing and nitriding atmospheres for use in wire mesh belting, thermocouple sheathing, resistive heating elements, heat sensing cables, furnace internals and like hardware. The compositional range of the alloy is 15.0-23.0 % Cr, 0.5-2.0 % Si, 0.0-4.0% Mo, 0.0-1.2 % Nb, 0.0-3.0 % Fe, 0.0-0.5 % Ti, 0.0-0.5 % Al, 0.0-0.3 % Mn, 0.0-0.1 % Zr, 0.0-0.06 % Ce, 0.005-0.025 % Mg, 0.0005-0.005 % B, 0.005-0.3 % C, 0.0-20.0 % Co, balance Ni. The alloy possesses a high degree of hot and cold workability, phase stability and strength retention at elevated temperatures.Type: GrantFiled: August 29, 2001Date of Patent: March 25, 2003Assignee: INCO Alloys International, Inc.Inventors: Norman C. Farr, Gaylord D. Smith
-
Publication number: 20020185197Abstract: A nickel base alloy for high temperature thermal processing hardware requiring ultra-low spallation and metal loss rates in oxidizing and nitriding atmospheres for use in wire mesh belting, thermocouple sheathing, resistive heating elements, heat sensing cables, furnace internals and like hardware. The compositional range of the alloy is 15.0-23.0% Cr, 0.5-2.0% Si, 0.04.0% Mo, 0.0-1.2% Nb, 0.0-3.0% Fe, 0.0-05% Ti, 0.0-0.5% Al, 0.0-0.3% Mn, 0.0-0.1% Zr, 0.0-0.035% Ce, 0.005-0.025% Mg, 0.0005-0.005% B, 0.005-0.3% C, 0.0-20.0% Co, balance Ni. The alloy possesses a high degree of hot and cold workability, phase stability and strength retention at elevated temperatures.Type: ApplicationFiled: August 29, 2001Publication date: December 12, 2002Inventors: Norman C. Farr, Gaylord D. Smith
-
Patent number: 6491769Abstract: A high strength, corrosion resistant Cr—Co—Ni base alloy for long-life service at 530° C. to 820° C. containing in % by weight about 23.5-25.5% Cr, 15.0-22.0% Co, 0.2-2.0% Al, 0.5-2.5% Ti, 0.5-2.5% Nb, up to 2.0% Mo, up to 1.0% Mn, 0.3-1.0% Si, up to 3.0% Fe, up to 0.3% Ta, up to 0.3% W, 0.005-0.08% C, 0.01-0.3 % Zr, 0.001-0.01% B, up to 0.05% rare earth as misch metal, 0.005-0.025% Mg plus optional Ca, balance Ni including trace additions and impurities. The alloy provides a combination of strength, ductility, stability, toughness and oxidation/sulfidation resistance so as to render the alloy range uniquely suitable for engineering applications where oxygen/sulfur-containing atmospheres are life limiting, in applications such as exhaust valves for diesel engines and in tubes for coal-fired steam boilers.Type: GrantFiled: August 29, 2001Date of Patent: December 10, 2002Assignee: Inco Alloys International, Inc.Inventors: Gaylord D. Smith, Brian A. Baker
-
Publication number: 20020044882Abstract: A low cost, highly heat and corrosion resistant alloy useful for the manufacture of diesel engine components, particularly exhaust valves, comprises in % by weight about 0.15-0.65% C, 40-49% Ni, 18-22% Cr, 1.2-1.8% Al, 2-3% Ti, 0.9-7.8% Nb, not more than 1% Co and Mo each, the balance being essentially Fe and incidental impurities. The Ti:Al ratio is ≦2:1 and the Nb:C weight % ratio is within a range of 6:1 and 12:1. Ta may be substituted for Nb on an equiatomic basis.Type: ApplicationFiled: August 22, 2001Publication date: April 18, 2002Applicant: Special Metals CorporationInventors: Michael G. Fahrmann, Gaylord D. Smith
-
Patent number: 6372181Abstract: A low cost, highly heat and corrosion resistant alloy useful for the manufacture of diesel engine components, particularly exhaust valves, comprises in % by weight about 0.15-0.65% C, 40-49% Ni, 18-22% Cr, 1.2-1.8% Al, 2-3% Ti, 0.9-7.8% Nb, not more than 1% Co and Mo each, the balance being essentially Fe and incidental impurities. The Ti:Al ratio is ≦2:1 and the Nb:C weight % ratio is within a range of 6:1 and 12:1. Ta may be substituted for Nb on an equiatomic basis.Type: GrantFiled: August 22, 2001Date of Patent: April 16, 2002Assignee: INCO Alloys International, Inc.Inventors: Michael G. Fahrmann, Gaylord D. Smith
-
Patent number: 5372662Abstract: A nickel-chromium-molybdenum-cobalt alloy has additions of tantalum and tungsten to provide superior stress rupture strength in the presence of grain size control agents, and has the following composition:______________________________________ Carbon 0.04-0.15 Iron 0-8 Chromium 18-25 Cobalt 10-15 Molybdenum 5-9 Aluminum 0.7-1.5 Tungsten 0-5 Titanium 0-0.5 Tantalum 0.7-2.5 Manganese 0-1 Silicon 0.05-0.75 Zirconium 0.01-0.05 Boron 0-0.Type: GrantFiled: July 9, 1993Date of Patent: December 13, 1994Assignee: Inco Alloys International, Inc.Inventors: Pasupathy Ganesan, Gaylord D. Smith
-
Patent number: 5279111Abstract: A gas turbine having internally cooled thermal barrier coated turbine blades is disclosed. The turbine blades are made from an alloy substrate exhibiting a low coefficient of thermal expansion, an intermediate bond coating and an exterior ceramic coating. Cooling fluid is supplied from the shaft of the compressor where it flows into and out of the turbine blade. Thermal barrier coated turbine blades result in more efficient gas turbine designs.Type: GrantFiled: August 27, 1992Date of Patent: January 18, 1994Assignee: Inco LimitedInventors: James A. E. Bell, John J. deBarbadillo, Gaylord D. Smith, Kirt K. Cushnie
-
Patent number: 5217545Abstract: A material for electric heater element sheathing, which has good weldability, is oxidation- and corrosion-resistant, and forms an eye-pleasing dark gray or black surface oxide, consists essentially of, by weight, from about 8.75-15.5% nickel, about 19.5-21.0% chromium, about 0.30-0.50 manganese, about 0.50-2.0% silicon, about 0.25-0.60% aluminum, about 0.25-1.0% titanium, up to about 0.05% carbon, up to about 0.005% sulfur, up to about 0.75% copper, up to about 1.0% cobalt, up to about 1.0% molybdenum, up to about 0.02% phosphorus, about 0.001-0.015% calcium plus magnesium and remainder essentially iron, wherein the Ferrite Number is between 1 and 15.Type: GrantFiled: May 27, 1992Date of Patent: June 8, 1993Assignee: Inco Alloys International, Inc.Inventors: Gaylord D. Smith, Walter H. Wendler, David B. O'Donnell
-
Patent number: 5209772Abstract: A dispersion-strengthened (DS) alloy, more particularly oxide-dispersion-strengthened (ODS) iron-based alloys which manifest resistant to oxidation at temperatures as high as 1300.degree. C. (approx. 2400.degree. F.) whereby the alloys are useful in the production of advanced aircraft gas turbine engine components and in demanding industrial applications.Type: GrantFiled: October 5, 1988Date of Patent: May 11, 1993Assignee: Inco Alloys International, Inc.Inventors: Raymond C. Benn, Gaylord D. Smith, John J. Fischer
-
Patent number: 5160382Abstract: A material for electric heater element sheathing, which has good weldability, is oxidation- and corrosion-resistant, and forms an eye-pleasing dark gray or black surface oxide, consists essentially of, by weight, from about 8.75-15.5% nickel, about 19.5-21.0% chromium, about 0.30-0.50 manganese, about 0.50-2.0% silicon, about 0.25-0.60% aluminum, about 0.25-1.0% titanium, up to about 0.05% carbon, up to about 0.005% sulfur, up to about 0.75% copper, up to about 1.0% cobalt, up to about 1.0% molybdenum, up to about 0.02% phosphorus, about 0.001-0.015% calcium plus magnesium and remainder essentially iron, wherein the Ferrite Number is between 3 and 15.Type: GrantFiled: January 17, 1992Date of Patent: November 3, 1992Assignee: Inco Alloys International, Inc.Inventors: Gaylord D. Smith, Walter H. Wendler, David B. O'Donnell
-
Patent number: 5034373Abstract: The invention provides a process for production of silver-containing precursor alloys to oxide superconductors, said alloys having reduced amounts of intermetallics. Powders containing metallic elemental components of an oxide superconductor are high energy milled for a predetermined amount of time to increase homogeneity of the mixed metallic elemental components of the oxide superconductor. Silver is then high energy milled into the metallic components. The mixed silver and metallic elemental components of the oxide superconductor are compacted for the silver-containing superconductor precursor. The compacted powder is preferably hot worked at a temperature of at least 50% of the precursor alloy's melting temperature in degrees Kelvin.Type: GrantFiled: December 22, 1989Date of Patent: July 23, 1991Assignees: Inco Alloys International, Inc., American Superconductor CorporationInventors: Gaylord D. Smith, Jon M. Poole, Marvin G. McKimpson, Lawrence J. Masur, Kenneth H. Sandhage
-
Patent number: 5017249Abstract: A nickel-chromium alloy exhibiting enhanced stress rupture strength and grain size stability at elevated temperatures up to about 1260.degree. (2300.degree. F.) due to the affirmative formation of M.sub.6 C carbide within the alloy. The alloy is especially useful for turbine and engine applications.Type: GrantFiled: July 10, 1989Date of Patent: May 21, 1991Assignee: Inco Alloys International, Inc.Inventors: Gaylord D. Smith, Curtis S. Tassen, Pasupathy Ganesan, Jack M. Wheeler
-
Patent number: 5002834Abstract: Discloses a composite metal body having an oxide-dispersion-strengthened substrate made by mechanical alloying and a high chromium-aluminum nickel- or cobalt-base coating on the substrate. The substrate is characterized by containing an amount of aluminum effective to react with oxygen and nitrogen within the body of the substrate to prevent migration of these gases to the interface of substrate and coating and to thereby inhibit spalling of the coating.Type: GrantFiled: April 1, 1988Date of Patent: March 26, 1991Assignee: Inco Alloys International, Inc.Inventors: Gaylord D. Smith, Raymond C. Benn
-
Patent number: 4962085Abstract: Discloses a process for producing oxidic superconductors having advantageously textured oxide structures which involves zone oxidizing elongated metallic precursors of the superconductors.Type: GrantFiled: April 12, 1988Date of Patent: October 9, 1990Assignee: Inco Alloys International, Inc.Inventors: John J. deBarbadillo, II, Gaylord D. Smith