Patents by Inventor Ge Chen

Ge Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140316788
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Applicant: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 8861927
    Abstract: Described techniques and tools include techniques and tools for mapping digital media data (e.g., audio, video, still images, and/or text, among others) in a given format to a transport or file container format useful for encoding the data on optical disks such as digital video disks (DVDs). A digital media universal elementary stream can be used to map digital media streams (e.g., an audio stream, video stream or an image) into any arbitrary transport or file container, including optical disk formats, and other transports, such as broadcast streams, wireless transmissions, etc. The information to decode any given frame of the digital media in the stream can be carried in each coded frame. A digital media universal elementary stream includes stream components called chunks. An implementation of a digital media universal elementary stream arranges data for a media stream in frames, the frames having one or more chunks.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Microsoft Corporation
    Inventors: Sudheer Sirivara, James D. Johnston, Naveen Thumpudi, Wei-Ge Chen, Serge Smirnov, Chris Messer
  • Patent number: 8832480
    Abstract: A portable electronic device having automatic power supply mode switching is provided. The portable electronic device includes a micro-sensor and a control circuit. The control circuit controls operations of the electronic device, the micro-sensor senses whether the electronic device is carried or worn by a user. When the electronic device operates in a normal mode, and if the electronic device is not carried or worn for a time longer than a buffer period of a predetermined interval, the control circuit switches to a sleep mode, which results in lower power consumption.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: September 9, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Yen-Lin Lee, Shan-Cheng Sun, Chih-Cheng Ku, He-Ge Chen
  • Publication number: 20140229186
    Abstract: An encoder performs context-adaptive arithmetic encoding of transform coefficient data. For example, an encoder switches between coding of direct levels of quantized transform coefficient data and run-level coding of run lengths and levels of quantized transform coefficient data. The encoder can determine when to switch between coding modes based on a pre-determined switch point or by counting consecutive coefficients having a predominant value (e.g., zero). A decoder performs corresponding context-adaptive arithmetic decoding.
    Type: Application
    Filed: March 31, 2014
    Publication date: August 14, 2014
    Applicant: Microsoft Corporation
    Inventors: Sanjeev Mehrotra, Wei-Ge Chen
  • Patent number: 8805696
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: August 12, 2014
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Publication number: 20140156287
    Abstract: An audio decoder provides a combination of decoding components including components implementing base band decoding, spectral peak decoding, frequency extension decoding and channel extension decoding techniques. The audio decoder decodes a compressed bitstream structured by a bitstream syntax scheme to permit the various decoding components to extract the appropriate parameters for their respective decoding technique.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 5, 2014
    Applicant: Microsoft Corporation
    Inventors: Kazuhito Koishida, Sanjeev Mehrotra, Chao He, Wei-Ge Chen
  • Patent number: 8737648
    Abstract: A spatial element is added to communications, including over telephone conference calls heard through headphones or a stereo speaker setup. Functions are created to modify signals from different callers to create the illusion that the callers are speaking from different parts of the room.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 27, 2014
    Inventors: Wei-ge Chen, Zhengyou Zhang
  • Patent number: 8731911
    Abstract: Speech quality estimation technique embodiments are described which generally involve estimating the human speech quality of an audio frame in a single-channel audio signal. A representation of a harmonic component of the frame is synthesized and used to compute a non-harmonic component of the frame. The synthesized harmonic component representation and the non-harmonic component are then used to compute a harmonic to non-harmonic ratio (HnHR). This HnHR is indicative of the quality of a user's speech and is designated as an estimate of the speech quality of the frame. In one implementation, the HnHR is used to establish a minimum speech quality threshold below which the quality of the user's speech is considered unacceptable. Feedback to the user is then provided based on whether the HnHR falls below the threshold.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: May 20, 2014
    Assignee: Microsoft Corporation
    Inventors: Wei-ge Chen, Zhengyou Zhang, Jaemo Yang
  • Patent number: 8712783
    Abstract: An encoder performs context-adaptive arithmetic encoding of transform coefficient data. For example, an encoder switches between coding of direct levels of quantized transform coefficient data and run-level coding of run lengths and levels of quantized transform coefficient data. The encoder can determine when to switch between coding modes based on a pre-determined switch point or by counting consecutive coefficients having a predominant value (e.g., zero). A decoder performs corresponding context-adaptive arithmetic decoding.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 29, 2014
    Assignee: Microsoft Corporation
    Inventors: Sanjeev Mehrotra, Wei-Ge Chen
  • Patent number: 8693713
    Abstract: The disclosed architecture employs signal processing techniques to provide audio perception only, or audio perception that matches the visual perception. This also provides spatial audio reproduction for multiparty teleconferencing such that the teleconferencing participants perceive themselves as if they were sitting in the same room. The solution is based on the premise that people perceive sounds as a reconstructed wavefront, and hence, the wavefronts are used to provide the spatial perceptual cues. The differences between the spatial perceptual cues derived from the reconstructed wavefront of sound waves and the ideal wavefront of sound waves form an objective metric for spatial perceptual quality, and provide the means of evaluating the overall system performance. Additionally, compensation filters are employed to improve the spatial perceptual quality of stereophonic systems by optimizing the objective metrics.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 8, 2014
    Assignee: Microsoft Corporation
    Inventors: Wei-ge Chen, Zhengyou Zhang, Yoomi Hur
  • Publication number: 20140039884
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Applicant: MICROSOFT CORPORATION
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 8645146
    Abstract: An audio decoder provides a combination of decoding components including components implementing base band decoding, spectral peak decoding, frequency extension decoding and channel extension decoding techniques. The audio decoder decodes a compressed bitstream structured by a bitstream syntax scheme to permit the various decoding components to extract the appropriate parameters for their respective decoding technique.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: February 4, 2014
    Assignee: Microsoft Corporation
    Inventors: Kazuhito Koishida, Sanjeev Mehrotra, Chao He, Wei-Ge Chen
  • Patent number: 8645127
    Abstract: Traditional audio encoders may conserve coding bit-rate by encoding fewer than all spectral coefficients, which can produce a blurry low-pass sound in the reconstruction. An audio encoder using wide-sense perceptual similarity improves the quality by encoding a perceptually similar version of the omitted spectral coefficients, represented as a scaled version of already coded spectrum. The omitted spectral coefficients are divided into a number of sub-bands. The sub-bands are encoded as two parameters: a scale factor, which may represent the energy in the band; and a shape parameter, which may represent a shape of the band. The shape parameter may be in the form of a motion vector pointing to a portion of the already coded spectrum, an index to a spectral shape in a fixed code-book, or a random noise vector. The encoding thus efficiently represents a scaled version of a similarly shaped portion of spectrum to be copied at decoding.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 4, 2014
    Assignee: Microsoft Corporation
    Inventors: Sanjeev Mehrotra, Wei-Ge Chen
  • Patent number: 8630861
    Abstract: A mixed lossless audio compression has application to a unified lossy and lossless audio compression scheme that combines lossy and lossless audio compression within a same audio signal. The mixed lossless compression codes a transition frame between lossy and lossless coding frames to produce seamless transitions. The mixed lossless coding performs a lapped transform and inverse lapped transform to produce an appropriately windowed and folded pseudo-time domain frame, which can then be losslessly coded. The mixed lossless coding also can be applied for frames that exhibit poor lossy compression performance.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: January 14, 2014
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Chao He
  • Patent number: 8620674
    Abstract: An audio encoder and decoder use architectures and techniques that improve the efficiency of multi-channel audio coding and decoding. The described strategies include various techniques and tools, which can be used in combination or independently. For example, an audio encoder performs a pre-processing multi-channel transform on multi-channel audio data, varying the transform so as to control quality. The encoder groups multiple windows from different channels into one or more tiles and outputs tile configuration information, which allows the encoder to isolate transients that appear in a particular channel with small windows, but use large windows in other channels. Using a variety of techniques, the encoder performs flexible multi-channel transforms that effectively take advantage of inter-channel correlation. An audio decoder performs corresponding processing and decoding. In addition, the decoder performs a post-processing multi-channel transform for any of multiple different purposes.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 31, 2013
    Assignee: Microsoft Corporation
    Inventors: Naveen Thumpudi, Wei-Ge Chen
  • Patent number: 8554569
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: October 8, 2013
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Publication number: 20130151244
    Abstract: Speech quality estimation technique embodiments are described which generally involve estimating the human speech quality of an audio frame in a single-channel audio signal. A representation of a harmonic component of the frame is synthesized and used to compute a non-harmonic component of the frame. The synthesized harmonic component representation and the non-harmonic component are then used to compute a harmonic to non-harmonic ratio (HnHR). This HnHR is indicative of the quality of a user's speech and is designated as an estimate of the speech quality of the frame. In one implementation, the HnHR is used to establish a minimum speech quality threshold below which the quality of the user's speech is considered unacceptable. Feedback to the user is then provided based on whether the HnHR falls below the threshold.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Applicant: MICROSOFT CORPORATION
    Inventors: Wei-ge Chen, Zhengyou Zhang, Jaemo Yang
  • Patent number: 8457958
    Abstract: An audio encoder encodes side information into a compressed audio bitstream containing encoding parameters used by the encoder for one or more encoding techniques, such as a noise-mask-ratio curve used for rate control. A transcoder uses the encoder generated side information to transcode the audio from the original compressed bitstream having an initial bit-rate into a second bitstream having a new bit-rate. Because the side information is derived from the original audio, the transcoder is able to better maintain audio quality of the transcoding. The side information also allows the transcoder to re-encode from an intermediate decoding/encoding stage for faster and lower complexity transcoding.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 4, 2013
    Assignee: Microsoft Corporation
    Inventors: Kazuhito Koishida, Sanjeev Mehrotra, Wei-Ge Chen
  • Patent number: 8428943
    Abstract: Quantization matrices facilitate digital audio encoding and decoding. An audio encoder generates and compresses quantization matrices; an audio decoder decompresses and applies the quantization matrices. The invention includes several techniques and tools, which can be used in combination or separately. For example, the audio encoder can generate quantization matrices from critical band patterns for blocks of audio data. The encoder can compute the quantization matrices directly from the critical band patterns, which can be computed from the same audio data that is being compressed. The audio encoder/decoder can use different modes for generating/applying quantization matrices depending on the coding channel mode of multi-channel audio data. The audio encoder/decoder can use different compression/decompression modes for the quantization matrices, including a parametric compression/decompression mode.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 23, 2013
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 8386269
    Abstract: An audio encoder and decoder use architectures and techniques that improve the efficiency of multi-channel audio coding and decoding. The described strategies include various techniques and tools, which can be used in combination or independently. For example, an audio encoder performs a pre-processing multi-channel transform on multi-channel audio data, varying the transform so as to control quality. The encoder groups multiple windows from different channels into one or more tiles and outputs tile configuration information, which allows the encoder to isolate transients that appear in a particular channel with small windows, but use large windows in other channels. Using a variety of techniques, the encoder performs flexible multi-channel transforms that effectively take advantage of inter-channel correlation. An audio decoder performs corresponding processing and decoding. In addition, the decoder performs a post-processing multi-channel transform for any of multiple different purposes.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 26, 2013
    Assignee: Microsoft Corporation
    Inventors: Naveen Thumpudi, Wei-Ge Chen