Patents by Inventor Gene A. Cochran

Gene A. Cochran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5643843
    Abstract: Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: July 1, 1997
    Assignee: The Dow Chemical Company
    Inventors: Stephen D. Dunmead, Alan W. Weimer, Daniel F. Carroll, Glenn A. Eisman, Gene A. Cochran, David W. Susnitzky, Donald R. Beaman, Kevin J. Nilsen
  • Patent number: 5607297
    Abstract: Carbothermally reduce a metal oxide to its corresponding metal nitride or metal carbide powder in a vertical gravity flow reactor by adding precursor pellets containing the metal oxide, a thermally decomposed binder material and carbon or a source of carbon directly to a heated reaction zone within the reactor. The pellets form a pellet bed, the top of which must be maintained within the heated reaction zone. The binder material is a blend of wheat and corn starches, optionally in conjunction with another binder such as melamine. The binder material thermally decomposes to a carbonaceous residue which functions both as an additional source of carbon and as a binder for the precursor pellets. The reactor may be modified by adding an internal vent line to remove volatile materials from the heated reaction zone before they have an opportunity to condense on internal reactor surfaces.
    Type: Grant
    Filed: August 24, 1994
    Date of Patent: March 4, 1997
    Assignee: The Dow Chemical Company
    Inventors: John P. Henley, Gene A. Cochran, David A. Dunn, Glenn A. Eisman, Alan W. Weimer
  • Patent number: 5538675
    Abstract: Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: July 23, 1996
    Assignee: The Dow Chemical Company
    Inventors: Stephen D. Dunmead, Alan W. Weimer, Daniel F. Carroll, Glenn A. Eisman, Gene A. Cochran, David W. Susnitzky, Donald R. Beaman, Kevin J. Nilsen
  • Patent number: 5525556
    Abstract: Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 11, 1996
    Assignee: The Dow Chemical Company
    Inventors: Stephen D. Dunmead, Alan W. Weimer, Daniel F. Carroll, Glenn A. Eisman, Gene A. Cochran, David W. Susnitzky, Donald R. Beaman, Kevin J. Nilsen
  • Patent number: 5370854
    Abstract: Carbothermally reduce a metal oxide to its corresponding metal nitride or metal carbide powder in a vertical gravity flow reactor by adding precursor pellets containing the metal oxide, a thermally decomposed binder material and carbon or a source of carbon directly to a heated reaction zone within the reactor. The pellets form a pellet bed, the top of which must be maintained within the heated reaction zone. The binder material is a blend of wheat and corn starches, optionally in conjunction with another binder such as melamine. The binder material thermally decomposes to a carbonaceous residue which functions both as an additional source of carbon and as a binder for the precursor pellets. The reactor may be modified by adding an internal vent line to remove volatile materials from the heated reaction zone before they have an opportunity to condense on internal reactor surfaces.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: December 6, 1994
    Assignee: The Dow Chemical Company
    Inventors: John P. Henley, Gene A. Cochran, David A. Dunn, Glenn A. Eisman, Alan W. Weimer
  • Patent number: 5219804
    Abstract: Rapidly heat powdered aluminum, an admixture of powdered aluminum and a compatible solid material, a powdered admixture of alumina and carbon, or aluminum nitride powder having a surface area lower than desired in the presence of a source of nitrogen at a temperature of 2473 to 3073K to produce aluminum nitride, then promptly quench the aluminum nitride product. The product has a surface area of greater than 10 m.sup.2 /g, preferably greater than 15 m.sup.2 /g.
    Type: Grant
    Filed: January 10, 1992
    Date of Patent: June 15, 1993
    Assignee: The Dow Chemical Company
    Inventors: Alan W. Weimer, Gene A. Cochran, John P. Henley, Glenn A. Eisman
  • Patent number: 5186543
    Abstract: An easy-open container includes guide strips to limit tearing to areas adjacent to the intended line of tearing with a tear strip. The guide strips protect zipper elements and bag walls from distortion or tearing due to deviating tear lines. In a second embodiment, the guide strips are included with one or more tear strips on a membrane which may be attached to a container.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: February 16, 1993
    Assignee: Illinois Tool Works Inc.
    Inventor: Gene A. Cochran
  • Patent number: 5126121
    Abstract: Rapidly heat powdered aluminum in the presence of a source of nitrogen at a temperature of 1873 to 2373 K. to produce aluminum nitride, then promptly quench the aluminum nitride product. The product has a surface area between 2 and 8 square meters per gram and an oxygen content of less than 1.2 weight percent.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: June 30, 1992
    Assignee: The Dow Chemical Company
    Inventors: Alan W. Weimer, John P. Henley, Gene A. Cochran, Glenn A. Eisman, William G. Moore
  • Patent number: 4825013
    Abstract: A process for forming an alcohol fraction boiling in the range of motor gasoline that is enriched in higher alcohols, comprises contacting a mixture of hydrogen, carbon monoxide and a lower alkanol with a catalyst comprising:(1) a first component comprising molybdenum, tungsten or a mixture thereof in free or combined form;(2) a second component comprising an alkali or alkaline earth element or a mixture thereof in free or combined form;(3) an optional third component comprising cobalt, nickel or iron or a mixture thereof in free or combined form; and(4) an optional fourth component comprising a support,under conditions sufficient to convert at least some of the one or more lower alcohols to higher alcohols.
    Type: Grant
    Filed: February 16, 1988
    Date of Patent: April 25, 1989
    Assignee: The Dow Chemical Company
    Inventors: George J. Quarderer, Rex R. Stevens, Gene A. Cochran, Craig B. Murchison
  • Patent number: 4749724
    Abstract: A Fischer-Tropsch reaction to form alcohols from hydrogen and carbon monoxide, using a catalyst containing:(1) at least one element selected from the group consisting of molybdenum, tungsten and rhenium in free or combined form;(2) a promoter comprising an alkali or alkaline earth element in free or combined form; and optionally(3) a support;forms an alcohol fraction boiling in the range of motor gasoline in at least about 20 percent CO.sub.2 free carbon selectivity.
    Type: Grant
    Filed: November 20, 1986
    Date of Patent: June 7, 1988
    Assignee: The Dow Chemical Company
    Inventors: George J. Quarderer, Gene A. Cochran