Patents by Inventor Gene Hawkins

Gene Hawkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8206143
    Abstract: The present teachings provide a modular articulating cement spacer mold for forming a temporary implant comprising a mold first portion; a mold second portion; a hinge region connecting the mold first portion and mold second portion; and a self-securing device to removably secure and separate the mold first portion and the mold second portion. Other modular articulating cement spacer molds are also provided.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 26, 2012
    Assignee: Biomet Manufacturing Corp.
    Inventors: H. Gene Hawkins, William Hartman, Kristen Martin, Nathan A. Winslow
  • Patent number: 8137608
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: March 20, 2012
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20110272862
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Applicant: BIOMET MANUFACTURING CORP.
    Inventors: David W. SCHROEDER, Jordan H. FREEDMAN, James E. GUNTER, Brian D. SALYER, H. Gene HAWKINS
  • Patent number: 8034090
    Abstract: A method for securing a graft to a bone includes forming a tunnel in the bone, positioning the graft in the tunnel, and securing the graft in the tunnel with an anchor. The method also includes attaching a distal end of an elongated anchor sleeve to a proximal end of the anchor and inserting a pre-compressed harvested bone material having a cruciate cross-section through the anchor sleeve into to a bore defined in the anchor. The bore has a mating cruciate cross-section. The method also includes removing the anchor sleeve after inserting the bone material into the anchor.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: October 11, 2011
    Assignee: Biomet Sports Medicine, LLC
    Inventors: Kevin T. Stone, H. Gene Hawkins, Zachary M. Hoffman, Gregory J. Denham, Troy M. Walters, Ryan A. Kaiser, Jason D. Meridew
  • Patent number: 7993401
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 9, 2011
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7927536
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 19, 2011
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7914539
    Abstract: A fixation device for securing tissue to a bone. The fixation device includes an anchor having a hollow body defining a longitudinal passage, and a plug configured to be received in at least a portion of the passage. The body comprises a cylindrical portion and a tapered tip portion. The cylindrical portion comprises a plurality of thin-walled window covers such that after implantation the window covers are resorbed first relative to other portions of the cylindrical portion for defining a plurality of apertures on the cylindrical portion.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 29, 2011
    Assignee: Biomet Sports Medicine, LLC
    Inventors: Kevin T Stone, H. Gene Hawkins, Zachary M Hoffman, Gregory J Denham, Troy M Walters, Ryan A Kaiser, Jason D Meridew
  • Publication number: 20100314800
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 16, 2010
    Applicant: Biomet Manufacturing Corporation
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20100298945
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Application
    Filed: August 3, 2010
    Publication date: November 25, 2010
    Applicant: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7780896
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: August 24, 2010
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20100083653
    Abstract: A counterbalance system for counterbalancing vibrations of a machine, including a housing adapted to be mounted to the machine. A hydraulic chamber is disposed within the housing and has a first and a second diaphragm on opposite sides thereof. A hydraulic fluid is disposed in the hydraulic chamber. A first air chamber is on a first side of the first diaphragm opposite the hydraulic chamber and a second air chamber is disposed on a second side of the second diaphragm opposite the hydraulic chamber. The hydraulic fluid acts as a mass and the diaphragms and air chambers act as a spring and damper of a mass damper system for counterbalancing vibrations of the machine.
    Type: Application
    Filed: December 12, 2008
    Publication date: April 8, 2010
    Applicant: FREUDENBERG-NOK GENERAL PARTNERSHIP
    Inventor: Gene Hawkins
  • Publication number: 20100046315
    Abstract: A container for bone cement includes a first member defining a chamber, which contains a first ingredient. The chamber also includes a second member movably coupled to the first member. The second member includes a mixing device that is movably disposed within the first chamber, and the second member defines a second chamber containing a second ingredient. The container additional includes an opening device that selectively opens the second chamber and allows the second ingredient to enter from the second chamber into the first chamber. The mixing device is movable within the first chamber to promote mixing of the first ingredient and the second ingredient to prepare the bone cement. A corresponding method of preparing bone cement is also disclosed.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Applicant: Biomet Manufacturing Corp.
    Inventors: Imad K. Merkhan, H. Gene Hawkins
  • Patent number: 7637729
    Abstract: The present teachings provide a modular articulating cement spacer mold for forming a temporary implant. The modular spacer mold includes a head component mold defining a first opening, a head connector positioned within the first opening of the head component mold, a stem component mold defining a second opening, and a stem connector to fit within the second opening of the stem component mold to mateably engage the head connector. Related kits and methods of forming a temporary implant are provided.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 29, 2009
    Assignee: Biomet Manufacturing Corp.
    Inventors: William Hartman, H. Gene Hawkins, Kristen Martin, Jacob Wilson
  • Publication number: 20090224428
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Application
    Filed: May 22, 2009
    Publication date: September 10, 2009
    Applicant: Biomet Manufacturing Corp.
    Inventors: David Wayne SCHROEDER, Jordan H. FREEDMAN, James E. GUNTER, Brian D. SALYER, H. Gene HAWKINS
  • Publication number: 20090175978
    Abstract: The present teachings provide a modular articulating cement spacer mold for forming a temporary implant comprising a mold first portion; a mold second portion; a hinge region connecting the mold first portion and mold second portion; and a self-securing device to removably secure and separate the mold first portion and the mold second portion. Other modular articulating cement spacer molds are also provided.
    Type: Application
    Filed: February 20, 2009
    Publication date: July 9, 2009
    Applicant: BIOMET MANUFACTURING CORP.
    Inventors: H. Gene Hawkins, William Hartman, Kristen Martin, Nathan A. Winslow
  • Publication number: 20090157189
    Abstract: The present teachings provide a modular articulating cement spacer mold for forming a temporary implant. The modular spacer mold includes a head component mold defining a first opening, a head connector positioned within the first opening of the head component mold, a stem component mold defining a second opening, and a stem connector to fit within the second opening of the stem component mold to mateably engage the head connector. Related kits and methods of forming a temporary implant are provided.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: BIOMET MANUFACTURING CORP.
    Inventors: William Hartman, H. Gene Hawkins, Kristen Martin, Jacob Wilson
  • Patent number: 7547405
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: June 16, 2009
    Assignee: Biomet Manufacturing Corp.
    Inventors: David Wayne Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20090082546
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Application
    Filed: December 4, 2008
    Publication date: March 26, 2009
    Applicant: Biomet Manufacturing Corp.
    Inventors: David W. SCHROEDER, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7462318
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: December 9, 2008
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20080140196
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: February 21, 2008
    Publication date: June 12, 2008
    Applicant: Biomet Manufacturing Corporation
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins