Patents by Inventor Gene Malkin

Gene Malkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240369988
    Abstract: This Application regards a system for continuously monitoring a workcell during operation of industrial machinery. The system includes a safety system, a monitoring system, and a controller. The safety system includes a sensor and supporting software or hardware for acquiring image data associated with the workcell. The monitoring system is for detecting a parameter value associated with the safety system. And the controller is configured to determine whether the image data is valid based at least in part on the detected parameter value, and cause an alert to be issued responsive to determining that the image data is invalid.
    Type: Application
    Filed: July 16, 2024
    Publication date: November 7, 2024
    Inventors: Ilya A. KRIVESHKO, Lev PERSITS, Scott DENENBERG, Paul Jakob SCHROEDER, Robert Craig RANDALL, Valentina CHAMORRO, Gene MALKIN
  • Patent number: 12066810
    Abstract: Systems and methods for continuously monitoring a workcell during operation of industrial machinery are disclosed. The system may comprise a safety system that includes at least one sensor and supporting software and/or hardware for acquiring image data associated with the workcell; a monitoring system for detecting a parameter value associated with the safety system; and a controller configured to determine a status of the safety system based at least in part on the detected parameter value and cause an alert to be issued if the status of the safety system does not satisfy a target objective.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: August 20, 2024
    Assignee: VEO ROBOTICS, INC.
    Inventors: Ilya A. Kriveshko, Lev Persits, Scott Denenberg, Paul Jakob Schroeder, Robert Craig Randall, Valentina Chamorro, Gene Malkin
  • Publication number: 20240246232
    Abstract: Crosstalk mitigation among cameras in neighboring monitored workcells is achieved by computationally defining a noninterference scheme that respects the independent monitoring and operation of each workcell. The scheme may involve communication between adjacent cells to adjudicate non-interfering camera operation or system-wide mapping of interference risks and mitigation thereof. Mitigation strategies can involve spread-spectrum techniques.
    Type: Application
    Filed: March 4, 2024
    Publication date: July 25, 2024
    Inventors: Lev PERSITS, Gene Malkin, Scott Denenberg, Karia Haiat Sasson
  • Patent number: 11945119
    Abstract: Crosstalk mitigation among cameras in neighboring monitored workcells is achieved by computationally defining a noninterference scheme that respects the independent monitoring and operation of each workcell. The scheme may involve communication between adjacent cells to adjudicate non-interfering camera operation or system-wide mapping of interference risks and mitigation thereof. Mitigation strategies can involve time-division and/or frequency-division multiplexing.
    Type: Grant
    Filed: May 3, 2023
    Date of Patent: April 2, 2024
    Assignee: Veo Robotics, Inc.
    Inventors: Scott Denenberg, Clara Vu, Gene Malkin, Lev Persits, Valentina Chamorro, Marek Wartenberg, Pratik Devendra Dalvi, Alberto Moel
  • Publication number: 20230271322
    Abstract: Crosstalk mitigation among cameras in neighboring monitored workcells is achieved by computationally defining a noninterference scheme that respects the independent monitoring and operation of each workcell. The scheme may involve communication between adjacent cells to adjudicate non-interfering camera operation or system-wide mapping of interference risks and mitigation thereof. Mitigation strategies can involve time-division and/or frequency-division multiplexing.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Scott DENENBERG, Clara VU, Gene MALKIN, Lev PERSITS, Valentina CHAMORRO, Marek WARTENBERG, Pratik Devendra DALVI, Alberto MOEL
  • Patent number: 11679504
    Abstract: Crosstalk mitigation among cameras in neighboring monitored workcells is achieved by computationally defining a noninterference scheme that respects the independent monitoring and operation of each workcell. The scheme may involve communication between adjacent cells to adjudicate non-interfering camera operation or system-wide mapping of interference risks and mitigation thereof. Mitigation strategies can involve time-division and/or frequency-division multiplexing.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: June 20, 2023
    Assignee: Veo Robotics, Inc.
    Inventors: Scott Denenberg, Clara Vu, Gene Malkin, Lev Persits, Valentina Chamorro, Marek Wartenberg, Pratik Devendra Dalvi, Alberto Moel
  • Publication number: 20220355482
    Abstract: Crosstalk mitigation among cameras in neighboring monitored workcells is achieved by computationally defining a noninterference scheme that respects the independent monitoring and operation of each workcell. The scheme may involve communication between adjacent cells to adjudicate non-interfering camera operation or system-wide mapping of interference risks and mitigation thereof. Mitigation strategies can involve time-division and/or frequency-division multiplexing.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 10, 2022
    Inventors: Scott DENENBERG, Clara VU, Gene MALKIN, Lev PERSITS, Valentina CHAMORRO, Marek WARTENBERG, Pratik Devendra DALVI, Alberto MOEL
  • Publication number: 20220141445
    Abstract: Systems and methods utilize one or more 3D cameras (e.g., ToF cameras) in industrial safety applications. The 3D camera generates a depth map that may be used by external hardware and software to classify objects in a workcell and generate control signals for machinery. To facilitate sensor-specific calibration and coordination among sensors in a workcell, the sensors may store calibration data in a boot file that is loaded upon start-up. During initialization, the calibration data is loaded and, as the sensor operates, corrections are made to sensed data (e.g., pixel depth values) using the calibration data.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Inventors: Gene MALKIN, Scott DENENBERG, Valentina CHAMORRO, Lev PERSITS
  • Publication number: 20220004162
    Abstract: Systems and methods for continuously monitoring a workcell during operation of industrial machinery are disclosed. The system may comprise a safety system that includes at least one sensor and supporting software and/or hardware for acquiring image data associated with the workcell; a monitoring system for detecting a parameter value associated with the safety system; and a controller configured to determine a status of the safety system based at least in part on the detected parameter value and cause an alert to be issued if the status of the safety system does not satisfy a target objective.
    Type: Application
    Filed: June 25, 2021
    Publication date: January 6, 2022
    Inventors: Ilya A. KRIVESHKO, Lev PERSITS, Scott DENENBERG, Paul Jakob SCHROEDER, Robert Craig RANDALL, Valentina CHAMORRO, Gene MALKIN
  • Publication number: 20210099689
    Abstract: In various embodiments, systems and methods for acquiring depth images utilize an architecture suited to safety-rated applications, and may include more than sensor (such as time-of-flight sensors) operating along different optical paths and a comparison module for ensuring proper sensor operation. Error metrics may be associated with pixel-level depth values for purposes of allowing safe control based on imperfectly known depths.
    Type: Application
    Filed: November 24, 2020
    Publication date: April 1, 2021
    Inventors: Scott DENENBERG, Lev PERSITS, Clara VU, Robert Craig RANDALL, Patrick SOBALVARRO, Valentina CHAMORRO, Gene MALKIN, Alberto MOEL
  • Patent number: 10887579
    Abstract: Systems and methods for calibrating a sensor array for 3D depth sensing include the steps of providing multiple 3D sensors each for (i) illuminating a field of view of the sensor and (ii) generating an output array of pixelwise values indicative of distances to objects within the illuminated a field of view; sequentially causing each of the 3D sensors to generate an output array while other 3D sensors are illuminating their fields of view; and creating an interference matrix from the generated output arrays, the interference matrix indicating, for each of the 3D sensors, a degree of interference by other 3D sensors simultaneously active therewith.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: January 5, 2021
    Assignee: VEO ROBOTICS, INC.
    Inventors: Scott Denenberg, Lev Persits, Clara Vu, Robert Craig Randall, Patrick Sobalvarro, Valentina Chamorro, Gene Malkin, Alberto Moel
  • Patent number: 10887578
    Abstract: In various embodiments, systems and methods for acquiring depth images utilize an architecture suited to safety-rated applications, and may include more than sensor (such as time-of-flight sensors) operating along different optical paths and a comparison module for ensuring proper sensor operation. Error metrics may be associated with pixel-level depth values for purposes of allowing safe control based on imperfectly known depths.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: January 5, 2021
    Assignee: VEO ROBOTICS, INC.
    Inventors: Scott Denenberg, Lev Persits, Clara Vu, Robert Craig Randall, Patrick Sobalvarro, Valentina Chamorro, Gene Malkin, Alberto Moel
  • Publication number: 20200077075
    Abstract: In various embodiments, systems and methods for generating a digital representation of a 3D space and objects therein include the steps of providing one or more 3D sensors for generating an output array of pixelwise values, the values including an optical intensity value and a value indicative of an estimated distances to an object within a field of view of the sensor; and processing successive output arrays originating from the 3D sensor(s) into a pixelwise array of depth values, each of the depth values having an associated error metric based at least in part on the associated intensity value.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 5, 2020
    Inventors: Scott Denenberg, Lev Persits, Clara Vu, Robert Craig Randall, Patrick Sobalvarro, Valentina Chamorro, Gene Malkin, Alberto Moel
  • Publication number: 20200077078
    Abstract: In various embodiments, systems and methods for acquiring depth images utilize an architecture suited to safety-rated applications, and may include more than sensor (such as time-of-flight sensors) operating along different optical paths and a comparison module for ensuring proper sensor operation. Error metrics may be associated with pixel-level depth values for purposes of allowing safe control based on imperfectly known depths.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 5, 2020
    Inventors: Scott Denenberg, Lev Persits, Clara Vu, Robert Craig Randall, Patrick Sobalvarro, Valentina Chamorro, Gene Malkin, Alberto Moel
  • Publication number: 20200077074
    Abstract: In various embodiments, systems and methods for calibrating a sensor array for 3D depth sensing include the steps of providing multiple 3D sensors each for (i) illuminating a field of view of the sensor and (ii) generating an output array of pixelwise values indicative of distances to objects within the illuminated a field of view; sequentially causing each of the 3D sensors to generate an output array while other 3D sensors are illuminating their fields of view; and creating an interference matrix from the generated output arrays, the interference matrix indicating, for each of the 3D sensors, a degree of interference by other 3D sensors simultaneously active therewith.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 5, 2020
    Inventors: Scott Denenberg, Lev Persits, Clara Vu, Robert Craig Randall, Patrick Sobalvarro, Valentina Chamorro, Gene Malkin, Alberto Moel
  • Publication number: 20120283955
    Abstract: The invention provides methods for the manipulation and processing of data from direct linear analysis of polymers such as nucleic acids. The resultant processed data is used to identify nucleic acids and/or their biological sources, and/or to identify mutations in the polymers.
    Type: Application
    Filed: February 28, 2012
    Publication date: November 8, 2012
    Applicant: Pathogenetix, Inc.
    Inventors: Douglas B. Cameron, Gene Malkin, Nirupama V. Chennagiri, Sergey V. Fridrikh, Ekaterina Protozanova