Patents by Inventor Gene Michael Altonen

Gene Michael Altonen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11407158
    Abstract: In order to reduce oscillations in process variables of an injection molding process, an injection molding machine may be operatively connected to a model database that stores models of injection molding machines and molds. A tuning controller may set initial gain values of a variable-gain proportional-integral-derivative (PID) controller. To set the initial gains, the tuning controller may be configured to obtain, from the model database, a model for a first and second injection molding machines and a model for a mold. The tuning controller may analyze the models to determine a correlation between injection molding machine parameters and mold cycle performance for the mold. Accordingly, the tuning controller may apply the correlation to determine an initial gain value for a least one of the first, second, and third gains of the PID controller. The tuning controller may then set the initial gain values for the PID controller.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 9, 2022
    Assignee: IMFLUX INC.
    Inventors: Gene Michael Altonen, Brian Matthew Burns
  • Patent number: 11358317
    Abstract: In order to improve the consistency of molded products as viscosity shifts throughout a run, a controller of an injection molding machine executes a calibration cycle in accordance with a mold cycle. The controller analyzes a plurality of sensed melt pressure values during the calibration cycle to determine one or more calibration metrics. The controller then uses the calibration metrics when executing each mold cycle of the run. More particularly, during each mold cycle of the run, the controller detects a plurality of sensed melt pressures prior to and during a fill phase of the mold cycle and compares the plurality of sensed melt pressures to the one or more calibration metrics to predict cavity pressure for a pack and hold phase of the mold cycle. The controller then adjusts a set point pressure for the pack and hold phase based on the predicted cavity pressure.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: June 14, 2022
    Assignee: IMFLUX INC.
    Inventors: Bryler Collins, Gene Michael Altonen, Chow-Chi Huang, Brandon Michael Birchmeier, Brian Matthew Burns
  • Patent number: 11351707
    Abstract: An additive injection system for use in injection molding machines to inject additive materials, such as fluids or powders, downstream of a nozzle of the injection molding machine. The additive injection unit has an additive tank to store or contain additive material and additive injectors that inject an additive material into an injection molding machine. A pump pumps the additive material from the tank through a common manifold connected to the additive injectors to be injected into the injection molding machine. A controller controls operation of the additive injection device and one or more sensors coupled to the additive injection device can provide feedback to the controller.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: June 7, 2022
    Assignee: IMFLUX INC.
    Inventors: Milko Gergov, Gene Michael Altonen, Herbert Kenneth Hanson, III, William Francis Lawless, III
  • Publication number: 20220168938
    Abstract: Systems and approaches for controlling an injection molding machine having a mold forming a mold cavity and being controlled according to an injection cycle include extruding a molten polymer according to an extrusion profile and measuring at least one variable during the extrusion profile with a first sensor. At least one extrusion operational parameter is adjusted based on the measured variable. The extrusion profile is terminated upon the molten polymer exceeding a first threshold, and the molten polymer is injected into the mold cavity according to an injection profile via a screw that moves from a first position to a second position. Upon completion of the injection profile, a recovery profile commences in which the screw is moved to the first position.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Inventors: William Francis Lawless, III, Gene Michael Altonen
  • Publication number: 20220097273
    Abstract: Systems and approaches for controlling an injection molding machine and a mold forming a mold cavity and being controlled according to an injection cycle. The systems and methods include analyzing a model of at least one of the injection molding machine, the mold, and a molten material to determine initial values for one or more control parameters of the injection molding machine, and executing a run of injection cycles at the injection molding machine; measuring operation of the injection molding machine during a particular injection cycle of the run of injection cycles; determining one or more operational parameters exceed a threshold; and upon determining that the one or more operational parameters exceed the threshold, adjusting the one or more control parameters for subsequent injection cycles of the run of injection cycles.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 31, 2022
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Patent number: 11267178
    Abstract: Systems and approaches for controlling an injection molding machine having a mold forming a mold cavity and being controlled according to an injection cycle include extruding a molten polymer according to an extrusion profile and measuring at least one variable during the extrusion profile with a first sensor. At least one extrusion operational parameter is adjusted based on the measured variable. The extrusion profile is terminated upon the molten polymer exceeding a first threshold, and the molten polymer is injected into the mold cavity according to an injection profile via a screw that moves from a first position to a second position. Upon completion of the injection profile, a recovery profile commences in which the screw is moved to the first position.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: March 8, 2022
    Assignee: IMFLUX INC.
    Inventors: William Francis Lawless, III, Gene Michael Altonen
  • Patent number: 11241813
    Abstract: In order to reduce oscillations in process variables of an injection molding process, a variable-gain proportional-integral-derivative (PID) controller is utilized to control one or more of the process variables. The injection molding system may also include a tuning controller to automatically tune at least one of the proportional, integral, or derivative gains within a mold cycle. The tuning controller may obtain sensor data that monitors the operation of the injection molding machine to determine an adjustment to at least one of the proportional, integral, or derivative gains. The tuning controller may adjust the gains of the variable-gain PID controller in accordance with the determined adjustment to the at least one of the proportional, integral, or derivative gains.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: February 8, 2022
    Assignee: IMFLUX INC.
    Inventors: Gene Michael Altonen, Brian Matthew Burns
  • Publication number: 20220024098
    Abstract: Non-time dependent measured variables are used to effectively determine an optimal hold profile for an expanding crosslinking polymer part in a mold cavity. A system and/or approach may first inject molten expanding crosslinking polymer into a mold cavity, then measure at least one non-time dependent variable during an injection molding cycle. Next, the system and/or method commences a hold profile for the part, and upon completing the hold profile, the part is ejected from the mold cavity.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventors: Richard Lewis Montague, II, Rick Alan Pollard, Chow-Chi Huang, Gene Michael Altonen, Kimberly Nichole McConnell, Aaron Timothy Neate
  • Patent number: 11225006
    Abstract: Systems and approaches for controlling an injection molding machine and a mold forming a mold cavity and being controlled according to an injection cycle. The systems and methods include analyzing a model of at least one of the injection molding machine, the mold, and a molten material to determine initial values for one or more control parameters of the injection molding machine, and executing a run of injection cycles at the injection molding machine; measuring operation of the injection molding machine during a particular injection cycle of the run of injection cycles; determining one or more operational parameters exceed a threshold; and upon determining that the one or more operational parameters exceed the threshold, adjusting the one or more control parameters for subsequent injection cycles of the run of injection cycles.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: January 18, 2022
    Assignee: IMFLUX INC.
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Publication number: 20210387390
    Abstract: Systems and approaches for controlling an injection molding machine having a mold forming a mold cavity include feeding a molten polymer into a barrel containing a screw disposed in a first position, advancing the screw a first instance, from the first position to a second position, to inject the molten polymer into the mold cavity to form a molded part, and ejecting a first molded part or a first set of molded parts from the mold cavity. Further, the screw is advanced a second instance, from the second position to a third position, to inject the molten polymer into the mold cavity to form an additional molded part. A second molded part or a second set of molded parts is ejected from the mold cavity. After the second advancing instance, a recovery profile is commenced in which the screw is returned to the first position.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 16, 2021
    Inventors: Brandon Michael Birchmeier, Brian Matthew Burns, Gene Michael Altonen, William Francis Lawless, III
  • Publication number: 20210387393
    Abstract: A method of detecting and compensating for a non-operational mold cavity in an injection molding apparatus having a plurality of mold cavities and an injection molding screw or ram includes injecting, via the injection molding screw or ram, a molten thermoplastic material into the plurality of mold cavities. The method includes measuring a first process parameter of the injection molding apparatus at a pre-determined time during or after the injecting. The method also includes determining, based on the first process parameter, whether one or more mold cavities of the plurality of mold cavities are non-operational. Then, when it is determined that one or more mold cavities are non-operational, the method includes automatically adjusting the first process parameter or a second process parameter of the injection molding apparatus.
    Type: Application
    Filed: May 19, 2021
    Publication date: December 16, 2021
    Inventors: Bryler Collins, Brian Matthew Burns, Gene Michael Altonen, Brandon Michael Birchmeier, Matthew Craver
  • Publication number: 20210387391
    Abstract: Systems and approaches for controlling an injection molding machine having a mold forming a mold cavity and being controlled according to an injection cycle include injecting a molten polymer into the mold cavity according to a startup profile. A first sensor is used to measure at least one variable during the startup profile. The startup profile is terminated upon the at least one variable exceeding a first threshold. The molten polymer is then injected into the mold cavity according to a primary injection profile.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 16, 2021
    Inventors: Brandon Michael Birchmeier, Brian Matthew Burns, Gene Michael Altonen
  • Patent number: 11161286
    Abstract: Non-time dependent measured variables are used to effectively determine an optimal hold profile for an expanding crosslinking polymer part in a mold cavity. A system and/or approach may first inject molten expanding crosslinking polymer into a mold cavity, then measure at least one non-time dependent variable during an injection molding cycle. Next, the system and/or method commences a hold profile for the part, and upon completing the hold profile, the part is ejected from the mold cavity.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: November 2, 2021
    Assignee: IMFLUX INC.
    Inventors: Richard Lewis Montague, II, Rick Alan Pollard, Chow-Chi Huang, Gene Michael Altonen, Kimberly Nichole McConnell, Aaron Timothy Neate
  • Publication number: 20210308923
    Abstract: Non-time dependent measured variables are used to effectively determine an optimal ejection time of a part from a mold cavity. A system and/or approach may first measure at least one non-time dependent variable during an injection molding cycle. The part is ready to be ejected from the mold upon the measured variable reaching a threshold value indicative of, for example, a part temperature dropping below an activation temperature.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventors: Nicholas Mulkern Unkovic, Gene Michael Altonen, Daniel David Lumpkin, William Francis Lawless, III, H. Kenneth Hanson, III, Chow-Chi Huang
  • Patent number: 11135754
    Abstract: A remote controller can be provided on any apparatus that employs feedback control from a native controller to add functionality to the apparatus where the native controller is not capable of providing such functionality independently.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: October 5, 2021
    Assignee: IMFLUX INC.
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Publication number: 20210268705
    Abstract: Non-time dependent calculated variables based on measured strain are used to effectively determine an optimal hold profile for an expanding crosslinking polymer part in a mold cavity. A system and/or approach may first inject molten expanding crosslinking polymer into a mold cavity, then measure strain at the mold cavity or at another location within the injection molding system, and then calculate at least one non-time dependent variable during an injection molding cycle. Next, the system and/or method commences a hold profile for the part, and upon completing the hold profile, the part is ejected from the mold cavity, whereupon a cure profile is commenced.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: William Francis Lawless, III, Rick Alan Pollard, Gene Michael Altonen, Chow-Chi Huang
  • Patent number: 11072102
    Abstract: Non-time dependent measured variables are used to effectively determine an optimal ejection time of a part from a mold cavity. A system and/or approach may first measure at least one non-time dependent variable during an injection molding cycle. The part is ready to be ejected from the mold upon the measured variable reaching a threshold value indicative of, for example, a part temperature dropping below an activation temperature.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: July 27, 2021
    Assignee: IMFLUX, INC.
    Inventors: Nicholas Mulkern Unkovic, Gene Michael Altonen, Daniel Lumpkin, William Francis Lawless, III, H. Kenneth Hanson, III, Chow-Chi Huang
  • Publication number: 20210206041
    Abstract: A method and system for adjusting melt pressure in an injection molding material that allows calculating a melt pressure of a molten plastic material to be injected and based on the calculated melt pressure and a desired melt pressure adjusting operation of an injection molding machine. This control of an injection molding cycle using the method and system of plastic melt pressure determination allows production of parts of increased quality and consistency.
    Type: Application
    Filed: December 17, 2020
    Publication date: July 8, 2021
    Inventors: Gene Michael Altonen, Bryler Collins, Ethan David Stiefel, Herbert Kenneth Hanson, III, William Francis Lawless, III
  • Publication number: 20210187811
    Abstract: A method of monitoring and controlling a molding clamping apparatus in an injection molding or other molding process is disclosed. The method includes creating a target strain profile, receiving a deviation limit, receiving a change in strain relating to a mold while it is closing from a first strain gauge, identifying a deviation from a target strain profile based on the output from the first strain gauge, determining that the deviation exceeds the deviation limit, and adjusting the rate or force of clamp movement. The target strain profile may have a first portion relating to a clamp closing process, a second portion relating to a filling process, and a third portion relating to a clamp opening process. The first portion relating to the clamp closing process may include an intermediate portion relating to a coining process having an intermediate clamp force setpoint.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: William Francis Lawless, III, Rick Alan Pollard, Chow-Chi Huang, Gene Michael Altonen
  • Patent number: 11040472
    Abstract: Non-time dependent calculated variables based on measured strain are used to effectively determine an optimal hold profile for an expanding crosslinking polymer part in a mold cavity. A system and/or approach may first inject molten expanding crosslinking polymer into a mold cavity, then measure strain at the mold cavity or at another location within the injection molding system, and then calculate at least one non-time dependent variable during an injection molding cycle. Next, the system and/or method commences a hold profile for the part, and upon completing the hold profile, the part is ejected from the mold cavity, whereupon a cure profile is commenced.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 22, 2021
    Assignee: IMFLUX INC.
    Inventors: William Francis Lawless, III, Rick Alan Pollard, Gene Michael Altonen, Chow-Chi Huang