Patents by Inventor Gene Michael

Gene Michael has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10538023
    Abstract: A hot runner injection molding apparatus, and method of use, is disclosed in which strain gauges are provided in the temperature zones of the hot runner injection molding apparatus and a hot runner controller creates a target strain profile, detects deviations from the target strain profile in any temperature zone based on the strain readings provided by the strain gauges in each temperature zone, and instructs correction of deviations from the target strain profile in any deviating temperature zone by adjusting the heat produced by a heater or heaters in the deviating temperature zone. The target strain profile may be based on a median or average of strain readings provided over time by the strain gauges in each temperature zone. A hollow installation tube for placing the strain gauges in the hot runner injection molding apparatus is also disclosed.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: January 21, 2020
    Assignee: IMFLUX INC.
    Inventors: William Francis Lawless, III, Rick Alan Pollard, Gene Michael Altonen, Brian Matthew Burns
  • Patent number: 10525626
    Abstract: Methods of monitoring and controlling a molding process using a sensed change in strain provided by a strain gauge are provided. A target strain profile is created for a molding process of a molding apparatus. An upper and lower deviation limit from the target strain profile for the molding process is provided. If a sensed change in strain exceeds a deviation limit, an alarm is activated.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: January 7, 2020
    Assignee: IMFLUX INC.
    Inventors: William Francis Lawless, III, Rick Alan Pollard, Brian Matthew Burns, Gene Michael Altonen
  • Publication number: 20200001511
    Abstract: Systems and approaches for controlling an injection molding machine and a mold forming a mold cavity and being controlled according to an injection cycle. The systems and methods include analyzing a model of at least one of the injection molding machine, the mold, and a molten material to determine initial values for one or more control parameters of the injection molding machine, and executing a run of injection cycles at the injection molding machine; measuring operation of the injection molding machine during a particular injection cycle of the run of injection cycles; determining one or more operational parameters exceed a threshold; and upon determining that the one or more operational parameters exceed the threshold, adjusting the one or more control parameters for subsequent injection cycles of the run of injection cycles.
    Type: Application
    Filed: June 5, 2019
    Publication date: January 2, 2020
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Publication number: 20190389112
    Abstract: Systems and approaches for controlling an injection molding machine having a first configuration and a mold forming a mold cavity and being controlled according to an injection cycle include obtaining a pattern for a portion of an injection cycle of an injection molding machine having a second configuration and operating the injection molding machine having the first configuration to inject a molten material into the mold cavity. While operating the injection molding machine having the first configuration, the obtained pattern is used to control a portion of the injection cycle.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 26, 2019
    Inventors: Bryler Collins, Ethan David Stiefel, Gene Michael Altonen, Brandon Michael Birchmeier, Brian Matthew Burns
  • Publication number: 20190389111
    Abstract: Systems and approaches for controlling an injection molding machine having a mold forming a mold cavity and being controlled according to an injection cycle include obtaining a pattern for the injection cycle, operating the injection molding machine to inject a molten material into the mold cavity, and measuring a cavity pressure value of the mold cavity during the mold cycle. Upon measuring a nominal cavity pressure value, a pattern recognition portion of the injection cycle that is at least partially dependent on the obtained pattern commences where a driving force being exerted on the molten material is adjusted such that the measured cavity pressure matches the obtained pattern for the injection cycle.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 26, 2019
    Inventors: Ethan David Stiefel, Bryler Collins, Gene Michael Altonen, Brian Matthew Burns, Brandon Michael Birchmeier
  • Publication number: 20190366607
    Abstract: A controller for an injection molding system is in communication with a melt flow control unit, a gas assist control unit, and a gas counter pressure control unit. The controller can effect real-time adjustments to gas assist pressure and/or gas counter pressure as a function of melt pressure or flow front position.
    Type: Application
    Filed: April 17, 2019
    Publication date: December 5, 2019
    Inventors: William Francis Lawless, III, H. Kenneth Hanson, III, Gene Michael Altonen, Chow-Chi Huang
  • Publication number: 20190337208
    Abstract: A remote controller can be provided on any apparatus that employs feedback control from a native controller to add functionality to the apparatus where the native controller is not capable of providing such functionality independently.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Publication number: 20190337207
    Abstract: Embodiments within the scope of the present disclosure are directed to external sensor kits that may be included in new injection molds or retrofitted into existing injection molds in order to approximate conditions within a mold, such as pressure or the location of a melt flow front. Such kits are designed to amplify meaningful measurements obtained by the external sensor kit so that noise measurements do not prevent the approximation of conditions within a mold. In some embodiments within the scope of the present disclosure, an external sensor kit includes a strain gauge sensor, a coupon, a support bracket, and a hammer. The strain gauge sensor is placed on a surface of the coupon and measures the strain in the coupon.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Chow-Chi Huang, Rick Alan Pollard, Gene Michael Altonen
  • Publication number: 20190337209
    Abstract: In order to improve the consistency of molded products as viscosity shifts throughout a run, a controller of an injection molding machine executes a calibration cycle in accordance with a mold cycle. The controller analyzes a plurality of sensed melt pressure values during the calibration cycle to determine one or more calibration metrics. The controller then uses the calibration metrics when executing each mold cycle of the run. More particularly, during each mold cycle of the run, the controller detects a plurality of sensed melt pressures prior to and during a fill phase of the mold cycle and compares the plurality of sensed melt pressures to the one or more calibration metrics to predict cavity pressure for a pack and hold phase of the mold cycle. The controller then adjusts a set point pressure for the pack and hold phase based on the predicted cavity pressure.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Bryler Collins, Gene Michael Altonen, Chow-Chi Huang, Brandon Michael Birchmeier, Brian Matthew Burns
  • Patent number: 10449707
    Abstract: A injection molding method involves measuring, using at least one strain gauge sensor, a change in strain in a mold side of a mold cavity, approximating a pressure within the mold cavity based on the change in strain, comparing the approximated pressure to a pre-set trigger point, and if the approximated pressure equals or exceeds the pre-set trigger point, activating a virtual cavity sensor having an optimal pre-defined pressure-time curve, wherein upon activation, the virtual cavity sensor tracks approximated pressures calculated from the change in strain measurements measured by the at least one strain gauge sensor over time and compares the results of the approximated pressure tracking to the optimal pre-defined pressure-time curve.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 22, 2019
    Assignee: IMFLUX, INC.
    Inventors: Rick Alan Pollard, Joshua Douglas Raker, Gene Michael Altonen, H. Kenneth Hanson, III
  • Patent number: 10444092
    Abstract: A strain gauge nozzle adapter that may be placed between a barrel end cap and a nozzle body of an injection molding system, the strain gauge nozzle adapter having a strain gauge pin that measures strain within the strain gauge nozzle adapter for use in approximating conditions within an injection molding system, such as pressure or the location of a melt flow front. The strain gauge nozzle adapter may include a plurality of strain gauge pins. An alternative material insert in the strain gauge nozzle adapter may surround a strain gauge pin to amplify meaningful measurements obtained by the strain gauge pin so that noise measurements do not compromise the accuracy of approximation of conditions within a mold.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 15, 2019
    Assignee: IMFLUX INC.
    Inventors: Rick Alan Pollard, Bryan Keith Allen, Chow-Chi Huang, Gene Michael Altonen
  • Publication number: 20190308353
    Abstract: A method of determining melt flow front travel in a molding apparatus includes setting a sensor threshold, receiving a sensor amount as an output from a sensor monitoring a nozzle of the molding apparatus, and determining that the sensor amount exceeds the sensor threshold. The method further includes receiving a screw location, calculating a travel distance of the screw from the screw location, and calculating melt flow front travel based on the travel distance of the screw. The method further includes receiving, via an interface, an operator generated value for the desired melt flow front travel to be reached, and sending, via an interface, an analog or digital output after the operator generated value has been reached. A method of detecting a leaking condition of a check valve is also included.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 10, 2019
    Inventors: William Francis Lawless, III, Brandon Michael Birchmeier, Brian Matthew Burns, Gene Michael Altonen, Ethan David Stiefel, Bryler Collins
  • Patent number: 10427341
    Abstract: An injection molding machine uses a controller to effectively control its operation. The controller may determine and/or receive information regarding the machine's maximum load capacity, and may also determine a current operational load value of the machine. The controller may cause the machine to operate at any number of combinations of settings of operational parameters which result in the machine operating at or below the maximum load value by adjusting any number of machine parameters associated with the injection molding machine based on feedback sensors measuring real-time operating conditions of the machine.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 1, 2019
    Assignee: IMFLUX INC.
    Inventors: Gene Michael Altonen, Brian Matthew Burns, H. Kenneth Hanson, III
  • Patent number: 10427342
    Abstract: An injection molding machine uses a controller to effectively control its operation. The controller may determine and/or receive information regarding the machine's maximum load capacity, and may also determine a current operational load value of the machine. The controller also may determine a number of set points used to operate the machine. The controller may cause the machine to operate at these set points, thereby resulting in the machine operating at or below the maximum load value by adjusting any number of machine parameters associated with the injection molding machine.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 1, 2019
    Assignee: IMFLUX INC.
    Inventors: Gene Michael Altonen, Brian Matthew Burns, H. Kenneth Hanson, III
  • Patent number: 10399264
    Abstract: Embodiments within the scope of the present disclosure are directed to external sensor kits that may be included in new injection molds or retrofitted into existing injection molds in order to approximate conditions within a mold, such as pressure or the location of a melt flow front. Such kits are designed to amplify meaningful measurements obtained by the external sensor kit so that noise measurements do not prevent the approximation of conditions within a mold. In some embodiments within the scope of the present disclosure, an external sensor kit includes a strain gauge sensor, a coupon, a support bracket, and a hammer. The strain gauge sensor is placed on a surface of the coupon and measures the strain in the coupon.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: September 3, 2019
    Assignee: IMFLUX, INC.
    Inventors: Chow-Chi Huang, Rick Alan Pollard, Gene Michael Altonen
  • Patent number: 10399262
    Abstract: A remote controller can be provided on any apparatus that employs feedback control from a native controller to add functionality to the apparatus where the native controller is not capable of providing such functionality independently.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 3, 2019
    Assignee: IMFLUX INC
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Patent number: 10300647
    Abstract: A carousel-like continuous molding system includes an arrangement of inclined feed channels. Each of the feed channels has a controllable valve therein positioned upstream of an inlet to an associated mold cavity. The valve is controllable so that adjustments may be made in real time to achieve or maintain delivery of molten polymeric material to the mold cavity at constant pressure.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 28, 2019
    Assignee: IMFLUX INC.
    Inventors: Coy Del Ward, Ralph Edwin Neufarth, Gene Michael Altonen, Chow-chi Huang, Charles John Berg, Jr.
  • Patent number: 10279525
    Abstract: A carousel-like continuous co-injection molding system includes an arrangement of upper and lower inclined feed channels. Each of the feed channels has a valve therein positioned upstream of an inlet to an associated mold cavity. The valve is controllable so that adjustments may be made in real time to achieve or maintain delivery of molten polymeric material to the mold cavity at constant pressure.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 7, 2019
    Assignee: IMFLUX INC.
    Inventors: Coy Del Ward, Ralph Edwin Neufarth, Gene Michael Altonen, Chow-Chi Huang, Charles John Berg, Jr.
  • Patent number: 10281891
    Abstract: A remote controller can be provided on any apparatus that employs feedback control from a native controller to add functionality to the apparatus where the native controller is not capable of providing such functionality independently.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: May 7, 2019
    Assignee: IMFLUX INC.
    Inventors: Brian Matthew Burns, Gene Michael Altonen
  • Patent number: 10226889
    Abstract: A injection molding method involves measuring, using at least one external sensor, a change in a parameter of a mold side of a mold cavity, approximating a condition within the mold cavity based on the change in the parameter, such as pressure within the mold cavity or flow front position, and comparing the approximated condition to a trigger point. If the approximated condition equals or exceeds the trigger point, activating a virtual cavity sensor having an optimal pre-defined pressure-time curve, and upon activation, the virtual cavity sensor tracks an approximated condition calculated from the change in parameter measurements measured by the at least one external sensor over time. In an embodiment, results of the approximated parameter tracking can be used in conjunction with an optimal pre-defined pressure-time curve.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: March 12, 2019
    Assignee: IMFLUX, INC.
    Inventors: Rick Alan Pollard, Joshua Douglas Raker, Gene Michael Altonen, H. Kenneth Hanson, III