Patents by Inventor Gene Reis

Gene Reis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240058127
    Abstract: Mitral valve prolapse and mitral regurgitation can be treating by implanting in the mitral annulus a transvalvular implant. The transvalvular implant has a first end, a first anchoring portion located proximate the first end, a second end, a second anchoring portion located proximate the second end, and a central portion. The transvalvular implant can include a wire form curved body The transvalvular implant can include eyelets and the center of the transvalvular implant can include an opening. The central portion can be positioned so that it extends transversely across a coaptive edge formed by the closure of the mitral valve leaflets. Tricuspid regurgitation can be treated by implanting in the tricuspid annulus a transvalvular bridge. The transvalvular bridge can have a first anchoring portion and a second anchoring portion. The transvalvular bridge can positioned so that the bridge extends transversely across a coaptive edges formed by the closure of the leaflets.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 22, 2024
    Inventors: Valavanur A. Subramanian, Gene Reis, Maurice Buchbinder, Tim MacNeil, Kevin H. Van Bladel
  • Publication number: 20220273432
    Abstract: Mitral valve prolapse and mitral regurgitation can be treating by implanting in the mitral annulus a transvalvular implant. The transvalvular implant has a first end, a first anchoring portion located proximate the first end, a second end, a second anchoring portion located proximate the second end, and a central portion. The transvalvular implant can include a wire form curved body The transvalvular implant can include eyelets and the center of the transvalvular implant can include an opening. The central portion can be positioned so that it extends transversely across a coaptive edge formed by the closure of the mitral valve leaflets. Tricuspid regurgitation can be treated by implanting in the tricuspid annulus a transvalvular bridge. The transvalvular bridge can have a first anchoring portion and a second anchoring portion. The transvalvular bridge can positioned so that the bridge extends transversely across a coaptive edges formed by the closure of the leaflets.
    Type: Application
    Filed: February 4, 2022
    Publication date: September 1, 2022
    Inventors: Valavanur A. Subramanian, Gene Reis, Maurice Buchbinder, Tim MacNeil
  • Patent number: 11419518
    Abstract: Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 23, 2022
    Assignee: Auris Health, Inc.
    Inventors: Serena H. Wong, Jason J. Hsu, Francis Macnamara, Gene Reis, Randall L. Schlesinger, Neal A. Tanner
  • Publication number: 20220183867
    Abstract: A delivery catheter comprises an inner shaft and an outer sheath. A stent-graft is held on a region of the inner shaft. An enlarged diameter distal region of the outer sheath constrains the stent-graft. Its retraction allows the stent-graft to deploy. A finger wheel on a handle is used to retract the outer sheath and is coupled to a sliding block with cable(s). The sliding block is coupled to the outer sheath and is held within a sliding track. The wheel can be actuated to tension the cable(s) and deform latch(es) coupled to sliding block, freeing them from slot(s) in the sliding track and allowing retraction of the sliding block and the outer sheath. A reinforcement sleeve is coupled to a smaller diameter proximal region of the outer sheath. A gap between the outer sheath distal region and the reinforcement sleeve allows the distal outer shaft region to be retracted.
    Type: Application
    Filed: July 21, 2021
    Publication date: June 16, 2022
    Applicant: PQ Bypass, Inc.
    Inventors: Gene REIS, Kumar JAMBUNATHAN, Steven TYLER
  • Patent number: 11090177
    Abstract: A delivery catheter comprises an inner shaft and an outer sheath. A stent-graft is held on a region of the inner shaft. An enlarged diameter distal region of the outer sheath constrains the stent-graft. Its retraction allows the stent-graft to deploy. A finger wheel on a handle is used to retract the outer sheath and is coupled to a sliding block with cable(s). The sliding block is coupled to the outer sheath and is held within a sliding track. The wheel can be actuated to tension the cable(s) and deform latch(es) coupled to sliding block, freeing them from slot(s) in the sliding track and allowing retraction of the sliding block and the outer sheath. A reinforcement sleeve is coupled to a smaller diameter proximal region of the outer sheath. A gap between the outer sheath distal region and the reinforcement sleeve allows the distal outer shaft region to be retracted.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 17, 2021
    Assignee: PQ Bypass, Inc.
    Inventors: Gene Reis, Kumar Jambunathan, Steven Tyler
  • Publication number: 20200337593
    Abstract: Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
    Type: Application
    Filed: May 12, 2020
    Publication date: October 29, 2020
    Inventors: Serena H. Wong, Jason J. Hsu, Francis Macnamara, Gene Reis, Randall L. Schlesinger, Neal A. Tanner
  • Patent number: 10667720
    Abstract: Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: June 2, 2020
    Assignee: Auris Health, Inc.
    Inventors: Serena H. Wong, Jason J. Hsu, Francis Macnamara, Gene Reis, Randall L. Schlesinger, Neal A. Tanner
  • Publication number: 20200022829
    Abstract: A delivery catheter comprises an inner shaft and an outer sheath. A stent-graft is held on a region of the inner shaft. An enlarged diameter distal region of the outer sheath constrains the stent-graft. Its retraction allows the stent-graft to deploy. A finger wheel on a handle is used to retract the outer sheath and is coupled to a sliding block with cable(s). The sliding block is coupled to the outer sheath and is held within a sliding track. The wheel can be actuated to tension the cable(s) and deform latch(es) coupled to sliding block, freeing them from slot(s) in the sliding track and allowing retraction of the sliding block and the outer sheath. A reinforcement sleeve is coupled to a smaller diameter proximal region of the outer sheath. A gap between the outer sheath distal region and the reinforcement sleeve allows the distal outer shaft region to be retracted.
    Type: Application
    Filed: March 19, 2019
    Publication date: January 23, 2020
    Inventors: Gene REIS, Kumar JAMBUNATHAN, Steven TYLER
  • Patent number: 10278851
    Abstract: A delivery catheter comprises an inner shaft and an outer sheath. A stent-graft is held on a region of the inner shaft. An enlarged diameter distal region of the outer sheath constrains the stent-graft. Its retraction allows the stent-graft to deploy. A finger wheel on a handle is used to retract the outer sheath and is coupled to a sliding block with cable(s). The sliding block is coupled to the outer sheath and is held within a sliding track. The wheel can be actuated to tension the cable(s) and deform latch(es) coupled to sliding block, freeing them from slot(s) in the sliding track and allowing retraction of the sliding block and the outer sheath. A reinforcement sleeve is coupled to a smaller diameter proximal region of the outer sheath. A gap between the outer sheath distal region and the reinforcement sleeve allows the distal outer shaft region to be retracted.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 7, 2019
    Assignee: PQ Bypass, Inc.
    Inventors: Gene Reis, Kumar Jambunathan, Steven Tyler
  • Publication number: 20180098869
    Abstract: A delivery catheter comprises an inner shaft and an outer sheath. A stent-graft is held on a region of the inner shaft. An enlarged diameter distal region of the outer sheath constrains the stent-graft. Its retraction allows the stent-graft to deploy. A finger wheel on a handle is used to retract the outer sheath and is coupled to a sliding block with cable(s). The sliding block is coupled to the outer sheath and is held within a sliding track. The wheel can be actuated to tension the cable(s) and deform latch(es) coupled to sliding block, freeing them from slot(s) in the sliding track and allowing retraction of the sliding block and the outer sheath. A reinforcement sleeve is coupled to a smaller diameter proximal region of the outer sheath. A gap between the outer sheath distal region and the reinforcement sleeve allows the distal outer shaft region to be retracted.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 12, 2018
    Inventors: Gene REIS, Kumar JAMBUNATHAN, Steven TYLER
  • Publication number: 20160374590
    Abstract: Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
    Type: Application
    Filed: September 7, 2016
    Publication date: December 29, 2016
    Inventors: Serena H. Wong, Jason J. Hsu, Francis Macnamara, Gene Reis, Randall L. Schlesinger, Neal A. Tanner
  • Publication number: 20160007881
    Abstract: Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: Serena H. Wong, Jason J. Hsu, Francis Macnamara, Gene Reis, Randall L. Schlesinger, Neal A. Tanner
  • Patent number: 9204933
    Abstract: The invention relates generally to robotically controlled systems, such as medical robotic systems. In one variation, a robotic catheter system is configured with a sterile barrier capable for transmitting a rotary force from a drive system on one side of the barrier to surgical tool on the other side of the sterile barrier for performing minimally invasive diagnostic and therapeutic procedures. Modularized drive systems for robotics are also disclosed herein.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 8, 2015
    Assignee: HANSEN MEDICAL, INC.
    Inventors: Gene Reis, Gregory F. Hirth, Enrique Romo
  • Patent number: 9138166
    Abstract: Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 22, 2015
    Assignee: Hansen Medical, Inc.
    Inventors: Serena H. Wong, Jason J. Hsu, Francis MacNamara, Gene Reis, Randall L. Schlesinger, Neal A. Tanner
  • Patent number: 8827948
    Abstract: Medical devices having an elongated steerable member are described herein. In one embodiment, a device includes an elongated body having a proximal section, a distal section, and a working lumen extending through the proximal and distal sections, a first coil having a distal portion, and a proximal portion, the proximal portion of the first coil being slidable relative to the proximal section of the elongated body, and being closer to a wall of the elongated body than to an axis of the elongated body, wherein a lengthwise portion of the distal portion of the first coil is anchored to the distal section of the elongated body, and a first steering wire located within a lumen of the first coil.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 9, 2014
    Assignee: Hansen Medical, Inc.
    Inventors: Enrique Romo, Jeffery B. Alvarez, Francis Macnamara, Gene Reis
  • Patent number: 8720448
    Abstract: A robotic surgical system configured to perform minimally invasive surgical procedures. In one variation, this robotic surgical system includes an instrument driver configured to steer an elongate instrument of an instrument assembly in one or more degrees of motion. A drape is disposed between the instrument driver and the instrument assembly. A drive interface apparatus is operatively coupled to the drape. The drape and drive interface apparatus may form a fluid barrier between the instrument driver and the instrument assembly. Drive interface apparatus may be disposed on a top surface of the instrument driver and on a bottom surface of the instrument assembly. The drive interface apparatus may transmit torque from the instrument driver to the instrument assembly. The input torque drives a pulley in the instrument assembly that operates one or more control wires to steer an elongate instrument of the instrument assembly for performing minimally invasive surgical procedures.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 13, 2014
    Assignee: Hansen Medical, Inc.
    Inventors: Gene Reis, Gregory J. Stahler, Gregory Francis Hirth, Enrique Romo
  • Publication number: 20140069437
    Abstract: The invention relates generally to robotically controlled systems, such as medical robotic systems. In one variation, a robotic catheter system is configured with a sterile barrier capable for transmitting a rotary force from a drive system on one side of the barrier to surgical tool on the other side of the sterile barrier for performing minimally invasive diagnostic and therapeutic procedures. Modularized drive systems for robotics are also disclosed herein.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 13, 2014
    Applicant: Hansen Medical, Inc.
    Inventors: Gene Reis, Gregory F. Hirth, Enrique Romo
  • Patent number: 8602031
    Abstract: The invention relates generally to robotically controlled systems, such as medical robotic systems. In one variation, a robotic catheter system is configured with a sterile barrier capable for transmitting a rotary force from a drive system on one side of the barrier to surgical tool on the other side of the sterile barrier for performing minimally invasive diagnostic and therapeutic procedures. Modularized drive systems for robotics arc also disclosed herein.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: December 10, 2013
    Assignee: Hansen Medical, Inc.
    Inventors: Gene Reis, Gregory Francis Hirth, Enrique Romo
  • Publication number: 20130253534
    Abstract: Apparatus, systems and methods for flushing a lumen of a catheter instrument to reduce or eliminate bubbles within the lumen. An interface valve is adapted for attachment to a proximal end of the catheter instrument and can receive a working instrument for insertion into the catheter instrument lumen. A fluid supply line and purge lines are coupled to the interface valve and in fluid communication with at least a portion of the interface valve lumen. Flow of fluid (e.g. saline and a gas such as bubbles) through purge lines is controllable using clamps such that fluid flowing into the interface valve lumen can be manipulated to flow in different directions through different portions of the interface valve lumen for evacuation through different purge lines, thus allowing for purging of forward and backward flows to remove gas or bubbles from the catheter instrument lumen.
    Type: Application
    Filed: February 15, 2013
    Publication date: September 26, 2013
    Applicant: Hansen Medical, Inc.
    Inventor: Gene Reis
  • Patent number: 8388556
    Abstract: A method for estimating the force on a distal end of a working catheter includes positioning a portion of a robotically controlled guide catheter and working catheter into a body lumen wherein a distal end of the working catheter projects distally from a distal end of the guide catheter. The working catheter and guide catheter are dithered with respect to one another using a dithering device operatively connected to a proximal portion of the working catheter. The coupling may occur directly to the working catheter or via a seal such as a Touhy seal. The force experienced by the working catheter at a proximal region is measured through at least one dithering cycle. The force at the distal end of the working catheter is then estimated based on the measured force at the proximal region. The estimated force may be displayed to a physician on, for example, a monitor.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: March 5, 2013
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Gregory J. Stahler, Alex Goldenberg, Gene Reis, Robert G. Younge, Mathew Clopp, David Camarillo, Toby St. John King