Patents by Inventor Gene Smith Berkowitz

Gene Smith Berkowitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8217376
    Abstract: Several methods of calibrating a wavelength-modulation spectroscopy apparatus configured to measure a concentration of an analyte in a sample gas are disclosed. Each of the methods allows for calibration and recalibration using a relatively safe gas regardless of whether the sample gas for which the concentration of the analyte can be determined is a hazardous gas. In one embodiment of the invention, calibration that is sample-gas specific is accomplished by determining a first slope coefficient and calibration function for the sample gas, after which a scaling factor can be determined based on the first slope coefficient and a second slope coefficient for the same or a different sample gas and used in a subsequent calibration (or recalibration) to scale the calibration function. In other embodiments of the invention, calibration that is not sample-gas specific is accomplished to allow for the determination of the analyte concentration in variable gas compositions and constant gas compositions.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 10, 2012
    Assignee: GE Infrastructure Sensing, Inc.
    Inventors: Xiaoyong Liu, Yufeng Huang, John McKinley Poole, Gene Smith Berkowitz, Anthony Kowal, Shawn D. Wehe, Hejie Li
  • Patent number: 8026499
    Abstract: Several methods of calibrating a wavelength-modulation spectroscopy apparatus configured to measure a concentration of an analyte in a sample gas are disclosed. Each of the methods allows for calibration and recalibration using a relatively safe gas regardless of whether the sample gas for which the concentration of the analyte can be determined is a hazardous gas. In one embodiment of the invention, calibration that is sample-gas specific is accomplished by determining a first slope coefficient and calibration function for the sample gas, after which a scaling factor can be determined based on the first slope coefficient and a second slope coefficient for the same or a different sample gas and used in a subsequent calibration (or recalibration) to scale the calibration function. In other embodiments of the invention, calibration that is not sample-gas specific is accomplished to allow for the determination of the analyte concentration in variable gas compositions and constant gas compositions.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 27, 2011
    Assignee: GE Infrastructure Sensing, Inc.
    Inventors: Xiaoyong Liu, Yufeng Huang, John McKinley Poole, Gene Smith Berkowitz, Anthony Kowal, Shawn D. Wehe, Hejie Li
  • Publication number: 20110181876
    Abstract: Several methods of calibrating a wavelength-modulation spectroscopy apparatus configured to measure a concentration of an analyte in a sample gas are disclosed. Each of the methods allows for calibration and recalibration using a relatively safe gas regardless of whether the sample gas for which the concentration of the analyte can be determined is a hazardous gas. In one embodiment of the invention, calibration that is sample-gas specific is accomplished by determining a first slope coefficient and calibration function for the sample gas, after which a scaling factor can be determined based on the first slope coefficient and a second slope coefficient for the same or a different sample gas and used in a subsequent calibration (or recalibration) to scale the calibration function. In other embodiments of the invention, calibration that is not sample-gas specific is accomplished to allow for the determination of the analyte concentration in variable gas compositions and constant gas compositions.
    Type: Application
    Filed: April 11, 2011
    Publication date: July 28, 2011
    Inventors: Xiaoyong Liu, Yufeng Huang, John McKinley Poole, Gene Smith Berkowitz, Anthony Kowal, Shawn D. Wehe, Hejie Li
  • Publication number: 20110181877
    Abstract: Several methods of calibrating a wavelength-modulation spectroscopy apparatus configured to measure a concentration of an analyte in a sample gas are disclosed. Each of the methods allows for calibration and recalibration using a relatively safe gas regardless of whether the sample gas for which the concentration of the analyte can be determined is a hazardous gas. In one embodiment of the invention, calibration that is sample-gas specific is, accomplished by determining a first slope coefficient and calibration function for the sample gas, after which a scaling factor can be determined based on the first slope coefficient and a second slope coefficient for the same or a different sample gas and used in a subsequent calibration (or recalibration) to scale the calibration function. In other embodiments of the invention, calibration that is not sample-gas specific is accomplished to allow for the determination of the analyte concentration in variable gas compositions and constant gas compositions.
    Type: Application
    Filed: April 11, 2011
    Publication date: July 28, 2011
    Inventors: Xiaoyong Liu, Yufeng Huang, John McKinley Poole, Gene Smith Berkowitz, Anthony Kowal, Shawn D. Wehe, Hejie Li
  • Patent number: 7957001
    Abstract: In one embodiment of the spectroscopy method, the method comprises the steps of modulating the wavelength of a monochromatic radiation at a modulation amplitude and a modulation frequency; determining a first variable representative of an absorbance of an analyte in a sample; and demodulating by phase-sensitive detection the first variable at a harmonic of the modulation frequency to produce a harmonic spectrum of the analyte. In one embodiment of the spectroscopy apparatus, the apparatus comprises a laser diode integrated with a first photodetector configured to detect an intensity of a backward emission from the laser diode and act as a reference detector; a second photodetector configured to detect an intensity of laser radiation exiting a sample; and electronic circuitry coupled to the laser diode and the photodetectors, configured to acquire and process spectra of the sample.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 7, 2011
    Assignee: GE Infrastructure Sensing, Inc.
    Inventors: Xiaoyong Liu, John McKinley Poole, Yufeng Huang, Daniel M. Stearns, Michael J. Gambuzza, Gene Smith Berkowitz, Anthony Kowal, Hejie Li, Shawn D. Wehe
  • Patent number: 7943915
    Abstract: Several methods of calibrating a wavelength-modulation spectroscopy apparatus configured to measure a concentration of an analyte in a sample gas are disclosed. Each of the methods allows for calibration and recalibration using a relatively safe gas regardless of whether the sample gas for which the concentration of the analyte can be determined is a hazardous gas. In one embodiment of the invention, calibration that is sample-gas specific is accomplished by determining a first slope coefficient and calibration function for the sample gas, after which a scaling factor can be determined based on the first slope coefficient and a second slope coefficient for the same or a different sample gas and used in a subsequent calibration (or recalibration) to scale the calibration function. In other embodiments of the invention, calibration that is not sample-gas specific is accomplished to allow for the determination of the analyte concentration in variable gas compositions and constant gas compositions.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 17, 2011
    Assignee: GE Infrastructure Sensing, Inc.
    Inventors: Xiaoyong Liu, Yufeng Huang, John McKinley Poole, Gene Smith Berkowitz, Anthony Kowal, Shawn D. Wehe, Hejie Li
  • Publication number: 20100091278
    Abstract: In one embodiment of the spectroscopy method, the method comprises the steps of modulating the wavelength of a monochromatic radiation at a modulation amplitude and a modulation frequency; determining a first variable representative of an absorbance of an analyte in a sample; and demodulating by phase-sensitive detection the first variable at a harmonic of the modulation frequency to produce a harmonic spectrum of the analyte. In one embodiment of the spectroscopy apparatus, the apparatus comprises a laser diode integrated with a first photodetector configured to detect an intensity of a backward emission from the laser diode and act as a reference detector; a second photodetector configured to detect an intensity of laser radiation exiting a sample; and electronic circuitry coupled to the laser diode and the photodetectors, configured to acquire and process spectra of the sample.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Inventors: Xiaoyong Liu, John McKinley Poole, Yufeng Huang, Daniel M. Stearns, Michael J. Gambuzza, Gene Smith Berkowitz, Anthony Kowal, Hejie Li, Shawn D. Wehe
  • Publication number: 20100089117
    Abstract: Several methods of calibrating a wavelength-modulation spectroscopy apparatus configured to measure a concentration of an analyte in a sample gas are disclosed. Each of the methods allows for calibration and recalibration using a relatively safe gas regardless of whether the sample gas for which the concentration of the analyte can be determined is a hazardous gas. In one embodiment of the invention, calibration that is sample-gas specific is accomplished by determining a first slope coefficient and calibration function for the sample gas, after which a scaling factor can be determined based on the first slope coefficient and a second slope coefficient for the same or a different sample gas and used in a subsequent calibration (or recalibration) to scale the calibration function. In other embodiments of the invention, calibration that is not sample-gas specific is accomplished to allow for the determination of the analyte concentration in variable gas compositions and constant gas compositions.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Inventors: Xiaoyong Liu, Yufeng Huang, John McKinley Poole, Gene Smith Berkowitz, Anthony Kowal, Shawn D. Wehe, Hejie Li