Patents by Inventor Genevieve Garon

Genevieve Garon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11104958
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 31, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon
  • Publication number: 20180363064
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 20, 2018
    Applicant: Gen-Probe Incorporated
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon
  • Patent number: 10006092
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: June 26, 2018
    Assignee: Gen-Probe Incorporated
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon
  • Publication number: 20160281174
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Application
    Filed: April 7, 2016
    Publication date: September 29, 2016
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon
  • Publication number: 20130344487
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 26, 2013
    Applicant: DiagnoCure Inc.
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon
  • Patent number: 8546551
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: October 1, 2013
    Assignee: DiagnoCure Inc.
    Inventors: Yves Fradet, Camille Chypre, Lyson Piché, Geneviève Garon
  • Publication number: 20120309001
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Application
    Filed: May 14, 2012
    Publication date: December 6, 2012
    Inventors: Yves Fradet, Camille Chypre, Lyson Piché, Geneviève Garon
  • Patent number: 8192931
    Abstract: The present invention relates to prostate cancer. More specifically, the present invention relates to a method to detect prostate cancer in a patient sample by detecting the RNA encoded by the gene PCA3. More particularly the present invention relates to a method for determining a predisposition, or presence of prostate cancer in a patient comprising: (a) contacting a biological sample of a patient with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting in the biological sample an amount of PCA3 and second prostate specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and therefrom determining the presence or absence of prostate cancer in the biological sample.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 5, 2012
    Assignee: DiagnoCure Inc.
    Inventors: Yves Fradet, Camille Chypre, Lyson Piché, Geneviéve Garon
  • Publication number: 20110306055
    Abstract: The present invention provides a novel method for diagnosing, monitoring, prognosing and staging Lymph Node (LN) status in colorectal cancer (CRC) that is more sensitive and accurate than conventional detection technologies such as histopathology. The Guanylyl Cyclase C (GCC) gene is specifically expressed in apical epithelial cells of the GI tract from the duodenum to the rectum and the detection of GCC mRNA in LNs is indicative of the presence of metastases. Quantitative RT-PCR (RT-qPCR) detection of GCC mRNA to identify the presence of colorectal cancer (CRC) cells in LNs has the potential to aid in CRC staging. When used in combination with glucuronidase B (GUSB), accurate quantification of GCC can be achieved with less than a 2-fold variation between intact and highly degraded RNA specimens.
    Type: Application
    Filed: February 24, 2010
    Publication date: December 15, 2011
    Applicant: DIAGNOCURE INC.
    Inventors: Jean-Francois Haince, Guillaume Beaudry, Genevieve Garon, Michel Houde, Timothy J. Holzer, Martin Beaulieu, Nicolas Bertrand
  • Publication number: 20110165573
    Abstract: The present invention relates to prostate cancer. More specifically, the present invention relates to a method to detect prostate cancer in a patient sample by detecting the RNA encoded by the gene PCA3. More particularly the present invention relates to a method for determining a predisposition, or presence of prostate cancer in a patient comprising: (a) contacting a biological sample of a patient with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting in the biological sample an amount of PCA3 and second prostate specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and therefrom determining the presence or absence of prostate cancer in the biological sample.
    Type: Application
    Filed: July 10, 2009
    Publication date: July 7, 2011
    Inventors: Yves FRADET, Camille Chypre, Lyson Piche, Genevieve Garon
  • Publication number: 20050282170
    Abstract: The present invention relates to prostate cancer. More specifically, the present invention relates to a method to detect prostate cancer in a patient sample by detecting the RNA encoded by the gene PCA3. More particularly the present invention relates to a method for determining a predisposition, or presence of prostate cancer in a patient comprising: (a) contacting a biological sample of a patient with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting in the biological sample an amount of PCA3 and second prostate specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and therefrom determining the presence or absence of prostate cancer in the biological sample.
    Type: Application
    Filed: February 9, 2004
    Publication date: December 22, 2005
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon