Patents by Inventor Geng-Wei Lin

Geng-Wei Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11084726
    Abstract: Provided is a graphene additive, having a viscosity between 1000 and 40000 cps and a grind fineness not greater than 15 ?m, and comprising: nano-graphene sheets and a silane coupling agent, wherein a weight ratio of the nano-graphene sheets to the silane coupling agent is 0.1-15:99.9-85, and carbon atoms on a surface of the nano-graphene sheets form chemical bonds Si—O—C with oxygen substituents of the silane coupling agent. The present application further provides a method of preparing the graphene additive.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 10, 2021
    Assignee: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Geng Wei Lin
  • Publication number: 20190359489
    Abstract: Provided is a graphene additive, having a viscosity between 1000 and 40000 cps and a grind fineness not greater than 15 ?m, and comprising: nano-graphene sheets and a silane coupling agent, wherein a weight ratio of the nano-graphene sheets to the silane coupling agent is 0.1-15:99.9-85, and carbon atoms on a surface of the nano-graphene sheets form chemical bonds Si—O—C with oxygen substituents of the silane coupling agent. The present application further provides a method of preparing the graphene additive.
    Type: Application
    Filed: August 8, 2019
    Publication date: November 28, 2019
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Geng Wei LIN
  • Patent number: 10427942
    Abstract: A graphene dispersion paste has a viscosity in a range from 50,000 to 350,000 cps and a scraper fineness less than 20 ?m, and includes graphene sheets, a solvent and a first polymer, wherein the graphene sheets have a bulk density in a range from 0.005 to 0.05 g/cm3, a thickness in a range from 0.68 to 10 nm, and a plane lateral dimension in a range from 1 to 100 ?m. The present application further provides methods of preparing and using the graphene dispersion paste.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: October 1, 2019
    Assignee: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Fang-Ru Shen, Geng Wei Lin, Jing-Ru Chen
  • Publication number: 20190119116
    Abstract: A graphene dispersion paste has a viscosity in a range from 50,000 to 350,000 cps and a scraper fineness less than 20 ?m, and includes graphene sheets, a solvent and a first polymer, wherein the graphene sheets have a bulk density in a range from 0.005 to 0.05 g/cm3, a thickness in a range from 0.68 to 10 nm, and a plane lateral dimension in a range from 1 to 100 ?m. The present application further provides methods of preparing and using the graphene dispersion paste.
    Type: Application
    Filed: January 11, 2018
    Publication date: April 25, 2019
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Fang-Ru SHEN, Geng Wei LIN, Jing-Ru CHEN
  • Patent number: 9056778
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: June 16, 2015
    Assignee: Enerage Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Geng-Wei Lin, Ping-Yun Yeh
  • Publication number: 20150158729
    Abstract: A method for manufacturing nano-graphene sheets, includes: intercalating and oxidizing a graphite material to form a graphite oxide by mixing the graphite material with an intercalation agent and oxidant; contacting the graphite oxide with a heat source to thermally flake the graphite oxide to nano-graphite sheets; suspending the nano-graphite sheets in a liquid medium and applying a mechanical shear force larger than 5,000 psi to mechanically flake the nano-graphite sheets for reducing the lateral size and thickness to form a nano-graphene suspension solution; separating the nano-graphene sheets from the nano-graphene suspension solution and drying the nano-graphene sheets; and finally reducing and heat treating the nano-graphene sheets to lower the oxygen content to less than 3 wt % and decrease the crystal defects.
    Type: Application
    Filed: June 12, 2014
    Publication date: June 11, 2015
    Inventors: Mark Y WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH, Tsung-Han CHEN
  • Publication number: 20140308522
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH
  • Patent number: 8771630
    Abstract: A method for the preparation of graphene is provided, which includes: (a) oxidizing a graphite material to form graphite oxide; (b) dispersing graphite oxide into water to form an aqueous suspension of graphite oxide; (c) adding a dispersing agent to the aqueous suspension of graphite oxide; and (d) adding an acidic reducing agent to the aqueous suspension of graphite oxide, wherein graphite oxide is reduced to graphene by the acidic reducing agent, and graphene is further bonded with the dispersing agent to form a graphene dispersion containing a surface-modified graphene. The present invention provides a method for the preparation of graphene using an acidic reducing agent. The obtained graphene can be homogeneously dispersed in water, an acidic solution, a basic solution, or an organic solution.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 8, 2014
    Assignee: Enerage, Inc.
    Inventors: Yi-Shuen Wu, Cheng-Yu Hsieh, Cheng-Shu Peng, Jing-Ru Chen, Jun-Meng Lin, Geng-Wei Lin
  • Publication number: 20130197256
    Abstract: A method for the preparation of graphene is provided, which includes: (a) oxidizing a graphite material to form graphite oxide; (b) dispersing graphite oxide into water to form an aqueous suspension of graphite oxide; (c) adding a dispersing agent to the aqueous suspension of graphite oxide; and (d) adding an acidic reducing agent to the aqueous suspension of graphite oxide, wherein graphite oxide is reduced to graphene by the acidic reducing agent, and graphene is further bonded with the dispersing agent to form a graphene dispersion containing a surface-modified graphene. The present invention provides a method for the preparation of graphene using an acidic reducing agent. The obtained graphene can be homogeneously dispersed in water, an acidic solution, a basic solution, or an organic solution.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Inventors: Yi-Shuen WU, Cheng-Yu Hsieh, Cheng-Shu Peng, Jing-Ru Chen, Jun-Meng Lin, Geng-Wei Lin