Patents by Inventor Gengfu Xu

Gengfu Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901506
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 13, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Larry Beck, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H. Gardner, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Yang Li, Gengfu Xu
  • Publication number: 20230050593
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 16, 2023
    Inventors: Larry Beck, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, William H. GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Patent number: 11489193
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 1, 2022
    Assignee: QuantumScape Battery, Inc.
    Inventors: Larry Beck, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H Gardner, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Yang Li, Gengfu Xu
  • Publication number: 20220328867
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, where-in these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 13, 2022
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, William H. GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Publication number: 20220250988
    Abstract: Set forth herein are processes and materials for making ceramic thin films by casting ceramic source powders and precursor reactants, binders, and functional additives into unsintered thin films and subsequently sintering the thin films under controlled atmospheres and on specific substrates.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 11, 2022
    Inventors: Oleh KARPENKO, Gengfu XU, Niall DONNELLY, Sriram IYER, Tim HOLME
  • Publication number: 20220021025
    Abstract: Provided herein are detect-free solid-state separators which are useful as Li| ion-conducting electrolytes in electro-chemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 20, 2022
    Inventors: Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Tim HOLME, Tommy HUANG, Sriram IYER, Kian KERMAN, Harsh MAHESHWARI, Jagdeep SINGH, Gengfu XU
  • Publication number: 20210344040
    Abstract: Set forth herein are processes and materials for sintering dense thin green films comprising lithium-stuffed garnet powder and a binder to obtain sintered lithium-stuffed garnet thin films. Some of the processes, herein, include providing a first setter and a second setter, wherein the first setter and second setter each include at least 5 atomic % lithium (Li) per setter; placing the green film on the first setter; placing the second setter within 2 cm of the green film but not in contact with the green film; and heating the green film to at least 900 C.
    Type: Application
    Filed: October 16, 2019
    Publication date: November 4, 2021
    Inventors: Niall DONNELLY, Sriam IYER, Jagdeep SINGH, Gengfu XU, Jordan FRIEDLAND, Hutha SARMA, Nima SHAH, Dong Hee Anna CHOI
  • Patent number: 11158880
    Abstract: Provided herein are defect-free solid-state separators which are useful as Li+ ion-conducting electrolytes in electrochemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: October 26, 2021
    Assignee: QuantumScape Battery, Inc.
    Inventors: Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Tim Holme, Tommy Huang, Sriram Iyer, Kian Kerman, Harsh Maheshwari, Jagdeep Singh, Gengfu Xu
  • Publication number: 20210194045
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: June 23, 2017
    Publication date: June 24, 2021
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, William H. GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Publication number: 20200216361
    Abstract: Set forth herein are processes and materials for making ceramic thin films by casting ceramic source powders and precursor reactants, binders, and functional additives into unsintered thin films and subsequently sintering the thin films under controlled atmospheres and on specific substrates.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 9, 2020
    Inventors: Oleh KARPENKO, Gengfu XU, Niall DONNELLY, Sriram IYER, Tim HOLME
  • Publication number: 20190260073
    Abstract: Provided herein are defect-free solid-state separators which are useful as Li+ ion-conducting electrolytes in electrochemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Application
    Filed: August 4, 2017
    Publication date: August 22, 2019
    Inventors: Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Tim HOLME, Tommy HUANG, Sriram IYER, Kian KERMAN, Harsh MAHESHWARI, Jagdeep SINGH, Gengfu XU
  • Patent number: 10347937
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: July 9, 2019
    Assignee: QuantumScape Corporation
    Inventors: Larry Beck, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H. Gardner, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Yang Li, Gengfu Xu
  • Publication number: 20180375149
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, Will GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Publication number: 20170022112
    Abstract: Set forth herein are processes and materials for making ceramic thin films by casting ceramic source powders and precursor reactants, binders, and functional additives into unsintered thin films and subsequently sintering the thin films under controlled atmospheres and on specific substrates.
    Type: Application
    Filed: July 21, 2016
    Publication date: January 26, 2017
    Inventors: Oleh KARPENKO, Gengfu XU, Niall DONNELLY, Sriram IYER, Tim Holme
  • Patent number: 8383283
    Abstract: A fuel cell includes an electrolyte matrix having a cathode side with a cathode disposed thereon and an anode side with an anode receiving portion and a sealing portion positioned peripherally to the anode receiving portion. The anode receiving portion has an anode disposed thereon. A fuel conduit has one or more one sealing platforms and having an opening extending through the fuel conduit. The anode is positioned in the opening. The fuel cell includes one or more devices for preventing the occurrence an electrical short circuit between the cathode and the sealing platform. The device for preventing the electrical short circuit is aligned with the sealing portion and sealing platform and is positioned on the electrolyte matrix, the cathode and/or the sealing platform.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: February 26, 2013
    Assignee: FuelCell Energy, Inc.
    Inventors: Chao-yi Yun, Mohammad Farooque, Abdelkader Hilmi, Richard Johnsen, Gengfu Xu
  • Patent number: 7919214
    Abstract: Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (LixNiO, where x is 0.1 to 1) and X-doped LiMeO2, wherein X is one of Mg, Ca, and Co.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: April 5, 2011
    Assignee: FuelCell Energy, Inc.
    Inventors: Gengfu Xu, Chao-Yi Yuh
  • Patent number: 7914946
    Abstract: Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of LSC (La0.8Sr0.2CoO3) and lithiated NiO (LixNiO, where x is 0.1 to 1).
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 29, 2011
    Assignee: FuelCell Energy, Inc.
    Inventors: Gengfu Xu, Chao-Yi Yuh
  • Publication number: 20100266932
    Abstract: A fuel cell including an electrolyte matrix having a cathode side with a cathode disposed thereon and an anode side with an anode receiving portion and a sealing portion positioned peripherally to the anode receiving portion. The anode receiving portion has an anode disposed thereon. A fuel conduit has one or more one sealing platforms and having an opening extending through the fuel conduit. The anode is positioned in the opening. The fuel cell includes one or more devices for preventing the occurrence an electrical short circuit between the cathode and the sealing platform. The device for preventing the electrical short circuit is aligned with the sealing portion and sealing platform and is positioned on the electrolyte matrix, the cathode and/or the sealing platform.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Applicant: FUELCELL ENERGY, INC.
    Inventors: Chao-yi Yuh, Mohammad Farooque, Abdelkader Hilmi, Richard Johnsen, Gengfu Xu
  • Publication number: 20080032183
    Abstract: A method of making a coated support material for use in fabricating a fuel cell matrix, comprising providing a support material, providing an alkaline precursor material, the alkaline precursor material being one of soluble in water and having a melting point of 400° C. or less, mixing the support material and the alkaline precursor material to form a mixture, and processing the mixture to cause the alkaline precursor material to coat the support material to form the coated support material.
    Type: Application
    Filed: August 7, 2006
    Publication date: February 7, 2008
    Inventors: Gengfu Xu, Chao-Yi Yuh
  • Publication number: 20060257721
    Abstract: A method of making a matrix element for carrying a carbonate electrolyte comprising providing a carbonate electrolyte material, pre-milling the carbonate electrolyte material to form a pre-milled carbonate electrolyte having a particle size of less than 0.3 microns, providing a support material, mixing the pre-milled carbonate electrolyte with the support material using a milling technique to form a mixture, and forming the mixture into the matrix element.
    Type: Application
    Filed: May 13, 2005
    Publication date: November 16, 2006
    Inventors: Gengfu Xu, Chao-Yi Yuh