Patents by Inventor Gengzhen Cao

Gengzhen Cao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11111152
    Abstract: A preparation method for modified molecular sieve and a modified molecular sieve-containing catalytic cracking catalyst. The preparation method comprises: mixing molecular sieve slurry, a compound solution containing ions of group IIIB metals of the periodic table of elements, organic complexing agent and/or dispersing agent and precipitating agent to obtain mixed slurry containing molecular sieve and precipitates of group IIIB elements in the periodic table of elements; and drying, and roasting or not roasting to obtain molecular sieve modified by the group IIIB elements. A weight ratio of group IIIB elements calculated based on oxides to molecular sieve dry basis is equal to (0.3-10):100, a molar ratio of organic complexing agent to ions of group IIIB metals is equal to (0.3-10):1, and a molar ratio of dispersing agent to the ions of group IIIB metals is equal to (0.2-16):1. Also related to is the catalytic cracking catalyst containing the modified molecular sieve prepared according to the method.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: September 7, 2021
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xionghou Gao, Shuhong Sun, Yunfeng Zheng, Xiaoliang Huang, Aiguo Lin, Xiaoyan Li, Lin Wang, Gengzhen Cao, Conghua Liu, Zhishuang Pan, Wei Ding, Yahong Wang, Dong Wang, Qiuxia Teng, Haitao Zhang
  • Patent number: 11084024
    Abstract: The invention relates to a molecular sieve modification method and a catalytic cracking catalyst containing a molecular sieve. The method comprises: mixing a solution containing an ion of a Group MB metal in the periodic table, an organic complexing agent, and/or a dispersant and a precipitation agent, and stirring the same to form a suspension containing a precipitant of a Group IIIB element; and mixing the resulting precipitant and a molecular sieve slurry, stirring the same to obtain a mixed slurry containing the precipitant of the Group MB element and a molecular sieve, and performing spray drying and optional calcination, to obtain a modified molecular sieve. The catalyst comprises, as calculated based on the catalyst mass being 100%, 10-55% of a modified molecular sieve (on a dry basis), 10-80% of clay (on a dry basis), 0-40% of an inorganic oxide (on an oxide basis), and 5-40% of a binding agent (on an oxide basis). The catalyst has good activity stability and heavy metal contamination resistance.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: August 10, 2021
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Shuhong Sun, Xiaoliang Huang, Haitao Zhang, Gengzhen Cao, Yunfeng Zheng, Lin Wang, Zhishuang Pan, Zhengguo Tan, Yahong Wang, Jinjun Cai, Hongchang Duan, Xueli Li, Chengyuan Yuan, Dong Wang
  • Publication number: 20180229223
    Abstract: The invention relates to a molecular sieve modification method and a catalytic cracking catalyst containing a molecular sieve. The method comprises: mixing a solution containing an ion of a Group MB metal in the periodic table, an organic complexing agent, and/or a dispersant and a precipitation agent, and stirring the same to form a suspension containing a precipitant of a Group IIIB element; and mixing the resulting precipitant and a molecular sieve slurry, stirring the same to obtain a mixed slurry containing the precipitant of the Group MB element and a molecular sieve, and performing spray drying and optional calcination, to obtain a modified molecular sieve. The catalyst comprises, as calculated based on the catalyst mass being 100%, 10-55% of a modified molecular sieve (on a dry basis), 10-80% of clay (on a dry basis), 0-40% of an inorganic oxide (on an oxide basis), and 5-40% of a binding agent (on an oxide basis). The catalyst has good activity stability and heavy metal contamination resistance.
    Type: Application
    Filed: August 4, 2016
    Publication date: August 16, 2018
    Inventors: Shuhong Sun, Xiaoliang Huang, Haitao Zhang, Gengzhen Cao, Yunfeng Zheng, Lin Wang, Zhishuang Pan, Zhengguo Tan, Yahong Wang, Jinjun Cai, Hongchang Duan, Xueli Li, Chengyuan Yuan, Dong Wang
  • Publication number: 20180222756
    Abstract: A preparation method for modified molecular sieve and a modified molecular sieve-containing catalytic cracking catalyst. The preparation method comprises: mixing molecular sieve slurry, a compound solution containing ions of group IIIB metals of the periodic table of elements, organic complexing agent and/or dispersing agent and precipitating agent to obtain mixed slurry containing molecular sieve and precipitates of group IIIB elements in the periodic table of elements; and drying, and roasting or not roasting to obtain molecular sieve modified by the group IIIB elements. A weight ratio of group IIIB elements calculated based on oxides to molecular sieve dry basis is equal to (0.3-10):100, a molar ratio of organic complexing agent to ions of group IIIB metals is equal to (0.3-10):1, and a molar ratio of dispersing agent to the ions of group IIIB metals is equal to (0.2-16):1. Also related to is the catalytic cracking catalyst containing the modified molecular sieve prepared according to the method.
    Type: Application
    Filed: August 4, 2016
    Publication date: August 9, 2018
    Applicant: Petrochina Company Limited
    Inventors: Xionghou Gao, Shuhong Sun, Yunfeng Zheng, Xiaoliang Huang, Aiguo Lin, Xiaoyan Li, Lin Wang, Gengzhen Cao, Conghua Liu, Zhishuang Pan, Wei Ding, Yahong Wang, Dong Wang, Qiuxia Teng, Haitao Zhang
  • Patent number: 9968915
    Abstract: Provided is a phosphorus-containing ultrastable Y-type rare earth (RE) molecular sieve and the preparation method thereof. The method is: based on NaY molecular sieve as a raw material, obtaining “one-exchange one-roast” RE-Na Y-type molecular sieve through the steps of exchanging with RE, pre-exchanging with dispersing, and the first calcination; and then performing ammonium salt exchange, phosphorus modification, and the second calcination on the “one-exchange one-roast” RE-Na Y-type molecular sieve, wherein the sequence of the RE exchange and the pre-exchange with dispersing is unlimited, and the sequence of the ammonium salt exchange and the phosphorus modification is unlimited as well. The obtained molecular sieve contains RE oxide 1-20 wt %, phosphorus 0.1-5 wt %, and sodium oxide no more than 1.2 wt %, and has a crystallization degree of 51-69% and a lattice parameter of 2.449-2.469 nm.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 15, 2018
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xionghou Gao, Haitao Zhang, Di Li, Xueli Li, Hongchang Duan, Zhengguo Tan, Chaowei Liu, Yunfeng Zheng, Xiaoliang Huang, Jinjun Cai, Chenxi Zhang, Zhishuang Pan, Gengzhen Cao
  • Patent number: 9889439
    Abstract: The present invention relates to a heavy oil catalytic cracking catalyst having a high yield of light oil and preparation methods thereof. The catalyst comprises 2 to 50% by weight of a magnesium-modified ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The magnesium-modified ultra-stable rare earth type Y molecular sieve is obtained by the following manner: the raw material, a NaY molecular sieve, is subjected to a rare earth exchange, a dispersing pre-exchange, a magnesium salt exchange modification, an ammonium salt exchange for sodium reduction, a second exchange and a second calcination. The catalyst provided in the present invention is characteristic in its high conversion capacity of heavy oil and a high yield of light oil.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 13, 2018
    Assignee: PetroChina Company Limited
    Inventors: Xionghou Gao, Haitao Zhang, Hongchang Duan, Di Li, Xueli Li, Zhengguo Tan, Xiaoliang Huang, Jinjun Cai, Yunfeng Zheng, Chenxi Zhang, Gengzhen Cao
  • Publication number: 20150209767
    Abstract: Provided is a phosphorus-containing ultrastable Y-type rare earth (RE) molecular sieve and the preparation method thereof. The method is: based on Na Y molecular sieve as a raw material, obtaining “one-exchange one-roast” RE-Na Y-type molecular sieve through the steps of exchanging with RE, pre-exchanging with dispersing, and the first calcination; and then performing ammonium salt exchange, phosphorus modification, and the second calcination on the “one-exchange one-roast” RE-Na Y-type molecular sieve, wherein the sequence of the RE exchange and the pre-exchange with dispersing is unlimited, and the sequence of the ammonium salt exchange and the phosphorus modification is unlimited as well. The obtained molecular sieve contains RE oxide 1-20 wt %, phosphorus 0.1-5 wt %, and sodium oxide no more than 1.2 wt %, and has a crystallization degree of 51-69% and a lattice parameter of 2.449-2.469 nm.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 30, 2015
    Applicant: PetroChina Company Limited
    Inventors: Xionghou Gao, Haitao Zhang, Di Li, Xueli Li, Hongchang Duan, Zhengguo Tan, Chaowei Liu, Yunfeng Zheng, Xiaoliang Huang, Jinjun Cai, Chenxi Zhang, Zhishuang Pan, Gengzhen Cao
  • Publication number: 20150011378
    Abstract: The present invention relates to a heavy oil catalytic cracking catalyst having a high yield of light oil and preparation methods thereof. The catalyst comprises 2 to 50% by weight of a magnesium-modified ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The magnesium-modified ultra-stable rare earth type Y molecular sieve is obtained by the following manner: the raw material, a NaY molecular sieve, is subjected to a rare earth exchange, a dispersing pre-exchange, a magnesium salt exchange modification, an ammonium salt exchange for sodium reduction, a second exchange and a second calcination. The catalyst provided in the present invention is characteristic in its high conversion capacity of heavy oil and a high yield of light oil.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 8, 2015
    Applicant: PetroChina Company Limited
    Inventors: Xionghou Gao, Haitao Zhang, Hongchang Duan, Di Li, Xueli Li, Zhengguo Tan, Xiaoliang Huang, Jinjun Cai, Yunfeng Zheng, Chenxi Zhang, Gengzhen Cao