Patents by Inventor Genquan Zhu

Genquan Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230392087
    Abstract: A process includes: cutting a hydrocarbon-containing feedstock oil into a light distillate oil and a heavy distillate oil; introducing the light distillate oil and a first catalyst into a down-flow reactor to produce a stream; subjecting the stream to a gas-solid separation to produce a first reaction hydrocarbon product and a first spent catalyst; or, introducing the stream into a fluidized bed reactor, and then subjecting to a gas-solid separation to produce a second reaction hydrocarbon product and a second spent catalyst; introducing a continuous catalyst, the heavy distillate oil and a second catalyst into an up-flow reactor, and then subjecting to a gas-solid separation to produce a third reaction hydrocarbon product and a third spent catalyst; separating out lower carbon olefins and light aromatics from reaction hydrocarbon products, separating out a light olefin fraction, and returning the light olefin fraction to the fluidized bed reactor or the up-flow reactor.
    Type: Application
    Filed: October 29, 2021
    Publication date: December 7, 2023
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SINOPEC RESEARCH INSTITUTE OF PETROLEUM PROCESSING CO., LTD.
    Inventors: Jianhong GONG, Xieqing WANG, Chao YANG, Xiaoli WEI, Genquan ZHU, Wenming MA, Yun CHEN
  • Patent number: 11639474
    Abstract: A catalytic cracking process includes a step of contacting a cracking feedstock with a catalytic cracking catalyst in the presence of a radical initiator for reaction under catalytic cracking conditions. The radical initiator contains a dendritic polymer and/or a hyperbranched polymer. The dendritic polymer and the hyperbranched polymer each independently has a degree of branching of about 0.3-1, and each independently has a weight average molecular weight of greater than about 1000. The catalytic cracking process is beneficial to enhancing and accelerating the free radical cracking of petroleum hydrocarbon and promoting the regulation of cracking activity and product distribution; by using the process disclosed herein, the conversion of catalytic cracking can be improved, the yields of ethylene and propylene can be increased, and the yield of coke can be reduced.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: May 2, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yibin Luo, Ying Ouyang, Enhui Xing, Xingtian Shu, Xiaojie Cheng, Genquan Zhu
  • Publication number: 20210395616
    Abstract: A catalytic cracking process includes a step of contacting a cracking feedstock with a catalytic cracking catalyst in the presence of a radical initiator for reaction under catalytic cracking conditions. The radical initiator contains a dendritic polymer and/or a hyperbranched polymer. The dendritic polymer and the hyperbranched polymer each independently has a degree of branching of about 0.3-1, and each independently has a weight average molecular weight of greater than about 1000. The catalytic cracking process is beneficial to enhancing and accelerating the free radical cracking of petroleum hydrocarbon and promoting the regulation of cracking activity and product distribution; by using the process disclosed herein, the conversion of catalytic cracking can be improved, the yields of ethylene and propylene can be increased, and the yield of coke can be reduced.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 23, 2021
    Inventors: Yibin LUO, Ying OUYANG, Enhui XING, Xingtian SHU, Xiaojie CHENG, Genquan ZHU
  • Patent number: 8900445
    Abstract: A process for the catalytic conversion of hydrocarbons to convert petroleum hydrocarbons in a higher yield for light olefins, particularly propylene is disclosed, the process involving a hydrocarbon-converting catalyst comprising zeolite, phosphorous and a transition metal, as defined herein.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 2, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang
  • Patent number: 8541630
    Abstract: Disclosed is a process for producing dimethyl ether from methanol, which is characterized in that the absorbing liquid used in said absorbing column is the bottom liquid of DME-fractionating column and/or bottom waste water of the methanol-recovering column. Said process can significantly reduce energy consumption of the apparatus.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: September 24, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Xiangbo Guo, Zheng Li, Qiang Li, Chaogang Xie, Keyong Yang, Anguo Mao, Xueliang Chang, Genquan Zhu
  • Patent number: 8373013
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Patent number: 8304582
    Abstract: The present invention provides a fluidized catalytic process for production of dimethyl ether from methanol, wherein said process is carried out in a reactor in which the catalyst is in a fluidized state. Said process comprises the following steps of (1) feeding the methanol feedstock via two or more locations selected from the bottom, lower part, middle part and upper part of the reactor, contacting with the catalyst for preparation of dimethyl ether by methanol dehydration, carrying out the reaction of preparing dimethyl ether by methanol dehydration to obtain the reaction stream, separating said reaction stream to obtain a coked catalyst and a crude product primarily containing the target product, i.e. dimethyl ether; (2) totally or partially feeding the coked catalyst obtained in step (1) into a regenerator in a continuous or batch manner for regeneration via coke-burning, the regenerated catalyst being directly recycled to step (1) after being totally or partially cooled.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 6, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zheng Li, Qiang Fu, Chaogang Xie, Minggang Li, Anguo Mao, Lisheng Li, Genquan Zhu, Fengmei Zhang, Yi bin Luo
  • Publication number: 20110065963
    Abstract: Disclosed is a process for producing dimethyl ether from methanol, which is characterized in that the absorbing liquid used in said absorbing column is the bottom liquid of DME-fractionating column and/or bottom waste water of the methanol-recovering column. Said process can significantly reduce energy consumption of the apparatus.
    Type: Application
    Filed: March 26, 2008
    Publication date: March 17, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinope
    Inventors: Xiangbo Guo, Zheng Li, Qiang Li, Chaogang Xie, Keyong Yang, Anguo Mao, Xueliang Chang, Genquan Zhu
  • Publication number: 20100076227
    Abstract: The present invention provides a fluidized catalytic process for production of dimethyl ether from methanol, wherein said process is carried out in a reactor in which the catalyst is in a fluidized state. Said process comprises the following steps of (1) feeding the methanol feedstock via two or more locations selected from the bottom, lower part, middle part and upper part of the reactor, contacting with the catalyst for preparation of dimethyl ether by methanol dehydration, carrying out the reaction of preparing dimethyl ether by methanol dehydration to obtain the reaction stream, separating said reaction stream to obtain a coked catalyst and a crude product primarily containing the target product, i.e. dimethyl ether; (2) totally or partially feeding the coked catalyst obtained in step (1) into a regenerator in a continuous or batch manner for regeneration via coke-burning, the regenerated catalyst being directly recycled to step (1) after being totally or partially cooled.
    Type: Application
    Filed: March 27, 2008
    Publication date: March 25, 2010
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Zheng Li, Qiang Fu, Chaogang Xie, Minggang Li, Anguo Mao, Lisheng Li, Genquan Zhu, Fengmei Zhang, Yinbin Luo
  • Publication number: 20090318742
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Application
    Filed: July 12, 2007
    Publication date: December 24, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Publication number: 20090264693
    Abstract: A process for the catalytic conversion of hydrocarbons, said process comprising the following steps: a feedstock of hydrocarbons is contacted with a hydrocarbon-converting catalyst to conduct a catalytic cracking reaction in a reactor, then the reaction products are taken from said reactor and fractionated to give light olefins, gasoline, diesel, heavy oil and other saturated hydrocarbons with low molecular weight, wherein said hydrocarbon-converting catalyst comprises, based on the total weight of the catalyst, 1-60 wt % of a zeolite mixture, 5-99 wt % of a thermotolerant inorganic oxide and 0-70 wt % of clay, wherein said zeolite mixture comprises, based on the total weight of said zeolite mixture, 1-75 wt % of a zeolite beta modified with phosphorus and a transition metal M, 25-99 wt % of a zeolite having a MFI structure and 0-74 wt % of a large pore zeolite, wherein the anhydrous chemical formula of the zeolite beta modified with phosphorus and the transition metal M is represented in the mass percent
    Type: Application
    Filed: September 28, 2006
    Publication date: October 22, 2009
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING SINOPEC
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang