Patents by Inventor Gento ICHIKAWA
Gento ICHIKAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11292601Abstract: An anti-icing system at least includes: a precooler that exchanges heat between bleed air and outside air; and an anti-icing unit that receives the bleed air passed through the precooler. A bleed air flow rate adjusting section that adjusts a flow rate of the bleed air supplied to the anti-icing unit adjusts the flow rate of the bleed air to suppress pressure of the bleed air to a pressure upper limit or lower by using relationship r1 and relationship r2. The relationship r1 is a relationship between an altitude and a pressure upper limit of the bleed air. The relationship r2 is a relationship between the pressure upper limit and outside air temperature at which the temperature of the bleed air reaches allowable temperature of ducts and other members through which the bleed air flows. The relationship r2 is provided based on the altitude.Type: GrantFiled: March 13, 2017Date of Patent: April 5, 2022Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Yoichi Uefuji, Masatoshi Morishita, Toshiyuki Ishida, Gento Ichikawa
-
Patent number: 10889381Abstract: An anti-icing system according to the present invention blows heated air to a curved inner surface of a main wing of an aircraft. The anti-icing system includes: a piccolo tube that includes a flow path through which the heated air flows in a longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and an engine that supplies the heated air toward the piccolo tube. The heated air ejected from the ejection holes of the piccolo tube is ejected toward an upper limit position and a lower limit position of an outside airflow stagnation point that are virtually formed on the main wing.Type: GrantFiled: January 31, 2017Date of Patent: January 12, 2021Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Gento Ichikawa, Yoichi Uefuji, Toshiyuki Ishida, Masatoshi Morishita, Kazuhiro Kawai
-
Patent number: 10589866Abstract: An anti-icing system according to the present invention includes: a piccolo tube that includes a flow path through which heated gas flows in the longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and an engine serving as a supply source that supplies the heated gas toward the piccolo tube. The piccolo tube is decreased in an area of the flow path in a stepwise manner or in a continuous manner in the longitudinal direction, and has a continuous side surface provided with the ejection holes.Type: GrantFiled: December 27, 2016Date of Patent: March 17, 2020Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Masatoshi Morishita, Masanori Tsujita, Satoshi Watanabe, Yoichi Uefuji, Kazuhiro Kawai, Toshiyuki Ishida, Gento Ichikawa, Go Fujita
-
Patent number: 10377497Abstract: There is provided an anti-icing system that has a simple structure and makes it possible to exert anti-icing performance by dealing with displacement of a stagnation point without increasing air resistance. The anti-icing system according to the present invention blows heated gas to an inner surface of a wing of an aircraft, and includes: a piccolo tube that includes a flow path through which the heated gas flows in a longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and a supply source that supplies the heated gas toward the piccolo tube. The piccolo tube is held to cause positions of the respective ejection holes to be fixed in a gravity direction.Type: GrantFiled: January 20, 2017Date of Patent: August 13, 2019Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Toshiyuki Ishida, Gento Ichikawa, Yoichi Uefuji, Masatoshi Morishita, Kazuhiro Kawai, Satoshi Watanabe, Go Fujita
-
Patent number: 10315775Abstract: An aircraft duct structure includes a first duct through which exhaust air from a front-side equipment compartment flows, and a second duct through which exhaust air from a rear-side equipment compartment flows. The first duct has a terminal end part where the exhaust air inside the second duct flows into the exhaust air inside the first duct at a substantially right angle, and a flow straightening plate located inside the terminal end part. The terminal end part has a jet opening which faces, across a clearance, an air pressure regulating port where an air pressure regulating valve is disposed. The inside of the terminal end part is divided by the flow straightening plate into an upper region and a lower region. The exhaust air inside the first duct and the exhaust air inside the second duct merge together in the upper region.Type: GrantFiled: February 24, 2016Date of Patent: June 11, 2019Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Masatoshi Morishita, Yoichi Uefuji, Toshiyuki Ishida, Gento Ichikawa, Yasunari Tanaka, Fumio Kondo
-
Patent number: 10046860Abstract: The present invention provides a windshield device including: a windshield; a heater that is provided in the windshield and configured to generate heat by energization; a temperature sensor that is provided in the windshield and configured to detect a temperature; and a control unit that performs power control on the heater. The control unit is configured to supply an input power to the heater, the input power being acquired by applying a detected temperature detected by the temperature sensor to a function that is determined in accordance with a dew-point temperature of an inside of a compartment separated from an outside of the compartment by the windshield.Type: GrantFiled: February 11, 2016Date of Patent: August 14, 2018Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Toshiyuki Ishida, Masatoshi Morishita, Yoichi Uefuji, Gento Ichikawa
-
Patent number: 9845157Abstract: An aircraft includes: a cockpit, the inside of which is pressurized; equipment which is at least partially disposed on the outside of the cockpit (external space) where the pressure is lower than the inside of the cockpit (internal space); a forced air delivery mechanism which discharges air from a peripheral space of the equipment on the outside of the cockpit by an exhaust fan to supply a branch flow divided from a main flow of air-conditioning exhaust, which has air-conditioned the inside of the cockpit, as cooling air to the equipment; and a natural air delivery mechanism which uses a differential pressure between the inside of the cockpit and the outside of the cockpit to supply air inside the cockpit as cooling air to the equipment through a ventilation opening putting in communication the peripheral space and the inside of the cockpit with one another.Type: GrantFiled: December 28, 2015Date of Patent: December 19, 2017Assignee: MITSUBISHI AIRCRAFT CORPORATIONInventors: Toshiyuki Ishida, Yoichi Uefuji, Masatoshi Morishita, Gento Ichikawa, Yasunari Tanaka, Fumio Kondo
-
Publication number: 20170275005Abstract: An anti-icing system at least includes: a precooler that exchanges heat between bleed air and outside air; and an anti-icing unit that receives the bleed air passed through the precooler. A bleed air flow rate adjusting section that adjusts a flow rate of the bleed air supplied to the anti-icing unit adjusts the flow rate of the bleed air to suppress pressure of the bleed air to a pressure upper limit or lower by using relationship r1 and relationship r2. The relationship r1 is a relationship between an altitude and a pressure upper limit of the bleed air. The relationship r2 is a relationship between the pressure upper limit and outside air temperature at which the temperature of the bleed air reaches allowable temperature of ducts and other members through which the bleed air flows. The relationship r2 is provided based on the altitude.Type: ApplicationFiled: March 13, 2017Publication date: September 28, 2017Inventors: Yoichi Uefuji, Masatoshi Morishita, Toshiyuki Ishida, Gento Ichikawa
-
Publication number: 20170233084Abstract: An anti-icing system according to the present invention blows heated air to a curved inner surface of a main wing of an aircraft. The anti-icing system includes: a piccolo tube that includes a flow path through which the heated air flows in a longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and an engine that supplies the heated air toward the piccolo tube. The heated air ejected from the ejection holes of the piccolo tube is ejected toward an upper limit position and a lower limit position of an outside airflow stagnation point that are virtually formed on the main wing.Type: ApplicationFiled: January 31, 2017Publication date: August 17, 2017Inventors: Gento Ichikawa, Yoichi Uefuji, Toshiyuki Ishida, Masatoshi Morishita, Kazuhiro Kawai
-
Patent number: 9730311Abstract: An electric compressor includes a motor, a scroll compression mechanism, a housing, a circuit unit, a circuit housing housing the circuit unit and integrated with the housing. The electric compressor includes a heat sink provided on a circuit unit side of a partition wall so as to project to be brought into contact with a semiconductor element of a power substrate, facing the partition wall that erects along a vertical direction to separate the inside of the housing from the circuit housing. The heat sink has a lower surface and an upper surface formed into a cylindrical shape so that width of an upper end portion and a lower end portion of the heat sink gradually decreases to reach a tip portion.Type: GrantFiled: October 25, 2013Date of Patent: August 8, 2017Assignee: MITSUBISHI HEAVY INDUSTRIES AUTOMOTIVE THERMAL SYSTEMS CO., LTD.Inventors: Gento Ichikawa, Takayuki Hagita, Akinori Yoshioka, Hiroyuki Kamitani, Koji Nakano, Masayuki Ishikawa, Masanori Takahashi, Kenji Aoyagi, Masato Ito
-
Publication number: 20170217593Abstract: There is provided an anti-icing system that has a simple structure and makes it possible to exert anti-icing performance by dealing with displacement of a stagnation point without increasing air resistance. The anti-icing system according to the present invention blows heated gas to an inner surface of a wing of an aircraft, and includes: a piccolo tube that includes a flow path through which the heated gas flows in a longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and a supply source that supplies the heated gas toward the piccolo tube. The piccolo tube is held to cause positions of the respective ejection holes to be fixed in a gravity direction.Type: ApplicationFiled: January 20, 2017Publication date: August 3, 2017Inventors: Toshiyuki Ishida, Gento Ichikawa, Yoichi Uefuji, Masatoshi Morishita, Kazuhiro Kawai, Satoshi Watanabe, Go Fujita
-
Publication number: 20170210476Abstract: An anti-icing system according to the present invention includes: a piccolo tube that includes a flow path through which heated gas flows in the longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and an engine serving as a supply source that supplies the heated gas toward the piccolo tube. The piccolo tube is decreased in an area of the flow path in a stepwise manner or in a continuous manner in the longitudinal direction, and has a continuous side surface provided with the ejection holes.Type: ApplicationFiled: December 27, 2016Publication date: July 27, 2017Inventors: Masatoshi Morishita, Masanori Tsujita, Satoshi Watanabe, Yoichi Uefuji, Kazuhiro Kawai, Toshiyuki Ishida, Gento Ichikawa, Go Fujita
-
Publication number: 20160311541Abstract: An aircraft duct structure includes a first duct through which exhaust air from a front-side equipment compartment flows, and a second duct through which exhaust air from a rear-side equipment compartment flows. The first duct has a terminal end part where the exhaust air inside the second duct flows into the exhaust air inside the first duct at a substantially right angle, and a flow straightening plate located inside the terminal end part. The terminal end part has a jet opening which faces, across a clearance, an air pressure regulating port where an air pressure regulating valve is disposed. The inside of the terminal end part is divided by the flow straightening plate into an upper region and a lower region. The exhaust air inside the first duct and the exhaust air inside the second duct merge together in the upper region.Type: ApplicationFiled: February 24, 2016Publication date: October 27, 2016Inventors: Masatoshi Morishita, Yoichi Uefuji, Toshiyuki Ishida, Gento Ichikawa, Yasunari Tanaka, Fumio Kondo
-
Publication number: 20160272332Abstract: The present invention provides a windshield device including: a windshield; a heater that is provided in the windshield and configured to generate heat by energization; a temperature sensor that is provided in the windshield and configured to detect a temperature; and a control unit that performs power control on the heater. The control unit is configured to supply an input power to the heater, the input power being acquired by applying a detected temperature detected by the temperature sensor to a function that is determined in accordance with a dew-point temperature of an inside of a compartment separated from an outside of the compartment by the windshield.Type: ApplicationFiled: February 11, 2016Publication date: September 22, 2016Inventors: Toshiyuki Ishida, Masatoshi Morishita, Yoichi Uefuji, Gento Ichikawa
-
Publication number: 20160244171Abstract: An aircraft includes: a cockpit, the inside of which is pressurized; equipment which is at least partially disposed on the outside of the cockpit (external space) where the pressure is lower than the inside of the cockpit (internal space); a forced air delivery mechanism which discharges air from a peripheral space of the equipment on the outside of the cockpit by an exhaust fan to supply a branch flow divided from a main flow of air-conditioning exhaust, which has air-conditioned the inside of the cockpit, as cooling air to the equipment; and a natural air delivery mechanism which uses a differential pressure between the inside of the cockpit and the outside of the cockpit to supply air inside the cockpit as cooling air to the equipment through a ventilation opening putting in communication the peripheral space and the inside of the cockpit with one another.Type: ApplicationFiled: December 28, 2015Publication date: August 25, 2016Inventors: Toshiyuki ISHIDA, Yoichi UEFUJI, Masatoshi MORISHITA, Gento ICHIKAWA, Yasunari TANAKA, Fumio KONDO
-
Publication number: 20150319839Abstract: An electric compressor includes a motor, a scroll compression mechanism, a housing, a circuit unit, a circuit housing housing the circuit unit and integrated with the housing. The electric compressor includes a heat sink provided on a circuit unit side of a partition wall so as to project to be brought into contact with a semiconductor element of a power substrate, facing the partition wall that erects along a vertical direction to separate the inside of the housing from the circuit housing. The heat sink has a lower surface and an upper surface formed into a cylindrical shape so that width of an upper end portion and a lower end portion of the heat sink gradually decreases to reach a tip portion.Type: ApplicationFiled: October 25, 2013Publication date: November 5, 2015Applicant: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS CO., LTD.Inventors: Gento ICHIKAWA, Takayuki HAGITA, Akinori YOSHIOKA, Hiroyuki KAMITANI, Koji NAKANO, Masayuki ISHIKAWA, Masanori TAKAHASHI, Kenji AOYAGI, Masato ITO