Patents by Inventor Geoffrey Bart Thrope

Geoffrey Bart Thrope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6718210
    Abstract: An input command controller (A) provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member (12) and socket member (14) relative to two orthogonal axes. When the joystick is implanted, a transmitter (50) transmits the signals to a patient carried unit (B). The patient carried unit includes an amplitude modulation algorithm such as a look-up table (124), a pulse width modulation algorithm (132), and an interpulse interval modulation algorithm (128). The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit (D). The implanted unit has a power supply (302) that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders (314, 316, 318). An output unit (320) assembles pulse trains with the decoded parameters for application to implanted electrodes (E).
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: April 6, 2004
    Assignee: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia
  • Publication number: 20010000187
    Abstract: An input command controller (A) provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member (12) and socket member (14) relative to two orthogonal axes. When the joystick is implanted, a transmitter (50) transmits the signals to a patient carried unit (B). The patient carried unit includes an amplitude modulation algorithm such as a look-up table (124), a pulse width modulation algorithm (132), and an interpulse interval modulation algorithm (128). The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit (D). The implanted unit has a power supply (302) that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders (314, 316, 318). An output unit (320) assembles pulse trains with the decoded parameters for application to implanted electrodes (E).
    Type: Application
    Filed: November 29, 2000
    Publication date: April 5, 2001
    Applicant: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia
  • Patent number: 6163725
    Abstract: An input command controller (A) provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member (12) and socket member (14) relative to two orthogonal axes. When the joystick is implanted, a transmitter (50) transmits the signals to a patient carried unit (B). The patient carried unit includes an amplitude modulation algorithm such as a look-up table (124), a pulse width modulation algorithm (132), and an interpulse interval modulation algorithm (128). The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit (D). The implanted unit has a power supply (302) that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders (314, 316, 318). An output unit (320) assembles pulse trains with the decoded parameters for application to implanted electrodes (E).
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: December 19, 2000
    Assignee: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia
  • Patent number: 6026328
    Abstract: An input command controller provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member and socket member relative to two orthogonal axes. When the joystick is implanted a transmitter transmits the signals to a patient carried unit. The patient carried unit includes an amplitude modulation algorithm such as a look-up table, a pulse width modulation algorithm, and an interpulse interval modulation algorithm. The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit. The implanted unit has a power supply that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders. An output unit assembles pulse trains with the decoded parameters for application to implanted electrodes.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: February 15, 2000
    Assignee: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia
  • Patent number: 5954758
    Abstract: An input command controller (A) provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member (12) and socket member (14) relative to two orthogonal axes. When the joystick is implanted, a transmitter (50) transmits the signals to a patient carried unit (B). The patient carried unit includes an amplitude modulation algorithm such as a look-up table (124), a pulse width modulation algorithm (132), and an interpulse interval modulation algorithm (128). The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit (D). The implanted unit has a power supply (302) that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders (314, 316, 318). An output unit (320) assembles pulse trains with the decoded parameters for application to implanted electrodes (E).
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: September 21, 1999
    Assignee: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia
  • Patent number: 5776171
    Abstract: An input command controller (A) provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member (12) and socket member (14) relative to two orthogonal axes. When the joystick is implanted, a transmitter (50) transmits the signals to a patient carried unit (B). The patient carried unit includes an amplitude modulation algorithm such as a look-up table (124), a pulse width modulation algorithm (132), and an interpulse interval modulation algorithm (128). The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit (D). The implanted unit has a power supply (302) that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders (314, 316, 318). An output unit (320) assembles pulse trains with the decoded parameters for application to implanted electrodes (E).
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 7, 1998
    Assignee: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia
  • Patent number: 5769875
    Abstract: An input command controller (A) provides logic function selection signals and proportional signals. The signals are generated by movement of a ball member (12) and socket member (14) relative to two orthogonal axes. When the joystick is implanted, a transmitter (50) transmits the signals to a patient carried unit (B). The patient carried unit includes an amplitude modulation algorithm such as a look-up table (124), a pulse width modulation algorithm (132), and an interpulse interval modulation algorithm (128). The algorithms derive corresponding stimulus pulse train parameters from the proportional signal which parameters are transmitted to an implanted unit (D). The implanted unit has a power supply (302) that is powered by the carrier frequency of the transmitted signal and stimulation pulse train parameter decoders (314, 316, 318). An output unit (320) assembles pulse trains with the decoded parameters for application to implanted electrodes (E).
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 23, 1998
    Assignee: Case Western Reserve University
    Inventors: Paul Hunter Peckham, Brian Smith, James Robert Buckett, Geoffrey Bart Thrope, Jorge Ernesto Letechipia