Patents by Inventor Geoffrey Choh-Fei Yeap

Geoffrey Choh-Fei Yeap has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7126172
    Abstract: A multiple gate oxidation process is provided. The process comprises the steps of (a) providing a silicon substrate (203) having a sacrificial oxide layer (207) thereon; (b) depositing and patterning a first layer of photoresist (209) on the sacrificial oxide layer, thereby forming a first region in which the sacrificial oxide layer is exposed; (c) etching the exposed sacrificial oxide layer within the first region, thereby forming a first etched region; (d) growing a first oxide layer (211) within the first etched region; (e) depositing and patterning a second layer of photoresist (213) on the sacrificial oxide layer and first oxide layer, thereby forming a second region in which the sacrificial oxide layer is exposed; (f) etching the exposed sacrificial oxide layer within the second region, thereby forming a second etched region; and (g) growing a second oxide layer (215) within the second etched region.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: October 24, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sangwoo Lim, Laegu Kang, Geoffrey (Choh-Fei) Yeap
  • Patent number: 6380041
    Abstract: An ultra-large scale integrated circuit semiconductor device having a laterally non-uniform channel doping profile is manufactured by using a Group IV element implant at an implant angle of between 0° to 60° from the vertical to create interstitials in a doped silicon substrate under the gate of the semiconductor device. After creation of the interstitials, a channel doping implantation is performed using a Group III or Group V element which is also implanted at an implant angle of between 0° to 60° from the vertical. A rapid thermal anneal is then used to drive the dopant laterally into the channel of the semiconductor device by transient enhanced diffusion.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: April 30, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Geoffrey Choh-Fei Yeap, Ognjen Milic, Che-Hoo Ng
  • Patent number: 6229177
    Abstract: An ultra-large scale integrated circuit semiconductor device having a laterally non-uniform channel doping profile is manufactured by using a Group IV element implant at an implant angle of between 0° to 60° from the vertical to create interstitials in a doped silicon substrate under the gate of the semiconductor device. After creation of the interstitials, a channel doping implantation is performed using a Group III or Group V element which is also implanted at an implant angle of between 0° to 60° from the vertical. A rapid thermal anneal is then used to drive the dopant laterally into the channel of the semiconductor device by transient enhanced diffusion.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: May 8, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Geoffrey Choh-Fei Yeap, Ognjen Milic, Che-Hoo Ng
  • Patent number: 6144063
    Abstract: A semiconductor device having a transistor or capacitor with an ultra-thin oxide, which is thinner than 10 angstrom in thickness, is manufactured by eliminating a gate oxidation step in the processing and using the polysilicon reoxidation step to create the ultra-thin gate oxide by diffusion after formation of the gate.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: November 7, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Geoffrey Choh-Fei Yeap, Zoran Krivokapic, Ming-Ren Lin
  • Patent number: 6100558
    Abstract: A method for fabricating a MOSFET device is provided. The method includes a step of forming a gate oxide including first and second gate oxide materials. The first gate oxide material has a higher dielectric constant than the second gate oxide material. The first gate oxide material is formed to be over source/drain extension regions of the device; and the second gate oxide material is formed over a channel region of the device. The first gate oxide material has a low dielectric constant and provides for mitigating gate fringing field effects. The second gate oxide material has a high dielectric constant and provides for forming a thick gate oxide over a channel region of the device. Controlled uniform growth of the second gate oxide material is facilitated because of the thickness thereof.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: August 8, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Zoran Krivokapic, Srinath Krishnan, Geoffrey Choh-Fei Yeap, Matthew Buynoski
  • Patent number: 6096586
    Abstract: There is provided a MOS device with self-compensating threshold implant regions and a method of manufacturing the same which includes a semiconductor substrate, a partial first threshold implant forming a higher concentration layer, a gate oxide formed on the surface of the higher concentration layer, and a gate formed on a surface of the gate oxide. The MOS device further includes a second threshold implant for forming self-compensating implant regions in the substrate which is subsequently heated to define pockets. A third implant is performed to create lightly-doped source/drain regions. A sidewall spacer is formed on each side of the gate. A fourth implant is performed to create highly-doped source/drain regions between the lightly-doped source/drain regions and the pockets.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: August 1, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ognjen Milic-Strkalj, Geoffrey Choh-Fei Yeap
  • Patent number: 6093594
    Abstract: An ultra-large scale CMOS integrated circuit semiconductor device is processed after the formation of the gates and gate oxides by N-type dopant implantation to form N-type shallow source and drain extension junctions. Spacers are formed for N-type dopant implantation to form N-type deep source and drain junctions. A higher temperature rapid thermal anneal then optimizes the NMOS source and drain extension junctions and junctions, and the spacers are removed. A thin oxide spacer is used to displace P-type dopant implantation to P-type shallow source and drain extension junctions. A nitride spacer is then formed for P-type dopant implantation to form P-type deep source and drain junctions. A second lower temperature rapid thermal anneal then independently optimizes the PMOS source and drain junctions independently from the NMOS source and drain junctions.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: July 25, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Geoffrey Choh-Fei Yeap, Qi Xiang, Ming-Ren Lin
  • Patent number: 6087208
    Abstract: A method for fabricating a MOSFET device is provided. The method includes a step of fining a gate oxide including first and second gate oxide materials. The first gate oxide material has a higher dielectric constant than the second gate oxide material. The first gate oxide material is formed to be over source/drain extension regions of the device; and the second gate oxide material is formed over a channel region of the device. The first gate oxide material has a low dielectric constant and provides for mitigating gate fringing field effects. The second gate oxide material has a high dielectric constant and provides for forming a thick gate oxide over a channel region of the device. Controlled uniform growth of the second gate oxide material is facilitated because of the thickness thereof.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: July 11, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Zoran Krivokapic, Srinath Krishnan, Geoffrey Choh-Fei Yeap, Matthew Buynoski
  • Patent number: 6087209
    Abstract: Ultra shallow, low resistance LDD junctions are achieved by forming an LDD implant generating an interstitial-rich section and forming a sub-surface, non-amorphous region generating a vacancy-rich region substantially overlapping the interstitial rich region generated when forming the LDD implant. Embodiments include ion implanting, Ge or Si to form surface amorphous and sub-surface, non-amorphous regions, and implanting B or BF.sub.2 to form the impurity region. Embodiments include forming the sub-surface, non-amorphous region before or after generating the surface amorphous region, and forming the impurity region before or after forming the sub-surface, non-amorphous region but after forming the surface amorphous region.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: July 11, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Geoffrey Choh-Fei Yeap, Akif Sultan, Shekhar Pramanick
  • Patent number: 6063682
    Abstract: A method of fabricating a transistor is provided. According to the method, a heavy ion is implanted into a silicon substrate so as to amorphize at least a portion of the silicon substrate. The amorphized silicon is substantially free of channels. A dopant is subsequently implanted into the amorphized silicon, and the amorphized silicon substantially contains the implanted dopant. Thereafter, a silicon implanting step is performed to create an excess of vacancies to interstitials within a predetermined range. Enhanced diffusion of the dopant within the predetermined range is mitigated because of the excess of vacancies to interstitials within this predetermined range.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: May 16, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akif Sultan, Geoffrey Choh-Fei Yeap