Patents by Inventor Geoffrey I. Wilson

Geoffrey I. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981000
    Abstract: A coated abrasive article comprises a backing having first and second opposed major surfaces. A make layer is bonded to the first major surface. Agglomerate grinding aid particles are directly bonded to the make layer. At least a portion of the agglomerate grinding aid particles comprise grinding aid particles retained in a binder, and are arranged according to an open predetermined pattern. Abrasive particles are directly bonded to the make layer in spaces between the agglomerate grinding aid particles. A size layer is directly bonded to the make layer, agglomerate grinding aid particles, and abrasive particles. A method of making a coated abrasive article, in which the agglomerate grinding aid particles are deposited onto a curable make layer precursor prior to depositing abrasive particles onto the curable make layer precursor in spaces between the agglomerate grinding aid particles is also disclosed.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: May 14, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Junting Li, Yuyang Liu, Mark A. Lukowski, Ernest L Thurber, Brian G. Koethe, Ann M. Hawkins, Geoffrey I. Wilson
  • Publication number: 20230356362
    Abstract: A method of making a coated abrasive article comprises sequential steps: disposing a curable composition on a major surface of a backing b) adhering abrasive particles to the curable composition; c) at least partially curing the free-radically polymerizable component; and d) at least partially curing the phenolic resin component to provide an at least partially cured composition. The curable composition comprises a phenolic resin component, a free-radically polymerizable component, and an organic polymeric rheology modifier, wherein the organic polymeric rheology modifier comprises an alkali-swellable/soluble polymer, and wherein, on a solid basis, the organic polymeric rheology modifier comprises from 0.001 to 5 weight percent of the phenolic resin component, the free-radically polymerizable component, and the organic polymeric rheology modifier combined. A variant wherein step b) effectively occurs after step c) is also disclosed. Abrasive articles made according to the methods are also disclosed.
    Type: Application
    Filed: August 19, 2021
    Publication date: November 9, 2023
    Inventors: Ernest L. Thurber, Thomas J. Nelson, Gregory P. Sorenson, Junting Li, Daniel M. Lentz, Brian G. Koethe, Jon T. Schwartz, Jing Zhang, Ann M. Hawkins, Geoffrey I. Wilson, Blake R. Rustad, Gregory S. Mueller
  • Patent number: 11724364
    Abstract: An abrasive article includes a backing, abrasive particles secured to the backing, and a size coat provided over the abrasive particles, the size coat comprises a binder resin, at least one filler material and at least one lubricant material having a melting temperature of at least about 200 degrees F. A method of grinding aluminum using such an abrasive article is also described.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: August 15, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jaime A. Martinez, Jing Zhang, Geoffrey I. Wilson, Stacy A. Sommer, Louis S. Moren
  • Patent number: 11648646
    Abstract: An abrasive article includes a first plurality of abrasive particles and a second plurality of abrasive particles. The first plurality of abrasive particles differ in at least one of a size, an average weight and a shape from the second plurality of abrasive particles. The first plurality of abrasive particles are spaced from the second plurality of abrasive particles by at least a minimum distance in the x-axis direction, and both the first plurality of abrasive particles and the second plurality of abrasive particles extend in similar paths to one another with respect to the y-axis.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 16, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Yuyang Liu, Geoffrey I. Wilson, Junting Li, Ernest L. Thurber
  • Publication number: 20230061952
    Abstract: An abrasive article is presented that includes a first set of shaped abrasive particles with a majority of the first set of shaped abrasive particles are oriented with respect to a backing in a first orientation. The abrasive article also includes a second set of shaped abrasive particles with a majority of the second set of shaped abrasive particles are oriented with respect to the backing in a second orientation, and wherein the second orientation differs from the first orientation. The first and second set of shaped abrasive particles are embedded within a coating layer on the baking.
    Type: Application
    Filed: January 25, 2021
    Publication date: March 2, 2023
    Inventors: Daniel M. Lentz, Geoffrey I. Wilson, Thomas J. Nelson, Blake R. Rustad, Junting Li, Willam S. Maher, Gregory S. Mueller
  • Patent number: 11534892
    Abstract: In methods and systems of making an abrasive article, abrasive particles are loaded to a distribution tool including a plurality of upper walls defining a plurality of spacing slots, and a plurality of lower walls defining a plurality of distribution slots. The spacing slots are open to the distribution slots, which are open to a lower side of the tool. The loaded particles are spaced and distributed from the distribution tool to a major face of a backing web below the lower side and moving relative to the tool in a machine direction. The upper walls space the particles in the machine direction. The particles distributed by the lower walls undergo an orientation sequence in which each particle is oriented into a column aligned along the machine direction. The upper walls can be disposed oblique to the lower walls. The upper and lower walls can have pointed upper portions.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 27, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Yuyang Liu, Junting Li, Geoffrey I. Wilson, Ernest L. Thurber
  • Publication number: 20220339761
    Abstract: A method of making a coated abrasive article includes: depositing precisely-shaped abrasive platelets into precisely-shaped cavities in a production tool; depositing diluent abrasive particles onto the production tool; contacting the precisely-shaped abrasive platelets and the diluent abrasive particles with a curable make layer precursor disposed on a major surface of a backing; separating the tool from the precisely-shaped abrasive platelets and the diluent abrasive particles; and at least partially curing the curable make layer precursor to provide an at least partially cured make layer precursor. Coated abrasive articles preparable by the method are also disclosed.
    Type: Application
    Filed: October 9, 2020
    Publication date: October 27, 2022
    Inventors: Yuyang Liu, Ann M. Hawkins, Geoffrey I. Wilson, Brian G. Koethe, Ernest L. Thurber, Negus B. Adefris, Junting Li, Fay T. Salmon
  • Patent number: 11433505
    Abstract: A system includes a distribution tool, a backing, a first plurality of abrasive particles and a second plurality of abrasive articles. The distribution tool includes a first section and a second section. The first section is configured to receive the first plurality of abrasive particles and pass the first plurality of abrasive particles through one or more of the plurality of slots to the backing. The second plurality of abrasive particles differ in at least one of a size, an average weight and a shape from the first plurality of abrasive particles. The second section is configured to receive the second plurality of abrasive particles and pass the second plurality of abrasive particles through one or more of the plurality of slots to the backing.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: September 6, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Yuyang Liu, Junting Li, Geoffrey I. Wilson, Ernest L. Thurber
  • Publication number: 20220016747
    Abstract: A coated abrasive article comprises a backing having first and second opposed major surfaces. A make layer is bonded to the first major surface. Agglomerate grinding aid particles are directly bonded to the make layer. At least a portion of the agglomerate grinding aid particles comprise grinding aid particles retained in a binder, and are arranged according to an open predetermined pattern. Abrasive particles are directly bonded to the make layer in spaces between the agglomerate grinding aid particles. A size layer is directly bonded to the make layer, agglomerate grinding aid particles, and abrasive particles. A method of making a coated abrasive article, in which the agglomerate grinding aid particles are deposited onto a curable make layer precursor prior to depositing abrasive particles onto the curable make layer precursor in spaces between the agglomerate grinding aid particles is also disclosed.
    Type: Application
    Filed: December 6, 2019
    Publication date: January 20, 2022
    Inventors: Junting Li, Yuyang Liu, Mark A. Lukowski, Ernest L. Thurber, Brian G. Koethe, Ann M. Hawkins, Geoffrey I. Wilson
  • Publication number: 20210380857
    Abstract: A plurality of supported abrasive particles wherein each supported abrasive particle respectively comprises an abrasive platelet member having a major surface and having at least one crushed support member securely bonded to and proximate the major surface. Abrasive articles containing the supported abrasive particles, and methods of making supported abrasive particles are also disclosed.
    Type: Application
    Filed: October 1, 2019
    Publication date: December 9, 2021
    Inventors: Yuyang LIU, Chainika JANGU, Negus B. ADEFRIS, Ernest L. THURBER, Bradford B. WRIGHT, Geoffrey I. WILSON, Junting LI, Amelia W. KOENIG, Steven J. KEIPERT
  • Patent number: 10919126
    Abstract: Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of strips defining a plurality of channels. Each channel is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the channels. The particle then passes partially through the channel such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the channel. The sequence then includes the particle remaining in simultaneous contact with one of the strips and the major face for a dwell period.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 16, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert
  • Patent number: 10773361
    Abstract: Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of walls defining a plurality of slots. Each slot is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side and moving relative to the tool. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the slots. The particle then passes partially through the slot such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the slot. The sequence then includes the particle remaining in simultaneous contact with one of the walls and the major face for a dwell period while the web moves relative to the tool.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: September 15, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Geoffrey I. Wilson, Mark R. Nyberg, Jeffery S. Thomford, Ernest L. Thurber, Brian G. Koethe, Charles C. Drange, Robert J. Hnatyk, John T. Boden
  • Publication number: 20200223031
    Abstract: An abrasive article includes a plurality of abrasive particles and the rotational orientation of at least a portion of the abrasive particles about the z-axis varies randomly within a defined range, and the spacing of the abrasive particles along the y-axis varies randomly.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert
  • Patent number: 10603766
    Abstract: An abrasive article includes a plurality of abrasive particles and the rotational orientation of at least a portion of the abrasive particles about the z-axis varies randomly within a defined range, and the spacing of the abrasive particles along the y-axis varies randomly.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: March 31, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert
  • Publication number: 20200086459
    Abstract: A system includes a distribution tool, a backing, a first plurality of abrasive particles and a second plurality of abrasive articles. The distribution tool includes a first section and a second section. The first section is configured to receive the first plurality of abrasive particles and pass the first plurality of abrasive particles through one or more of the plurality of slots to the backing. The second plurality of abrasive particles differ in at least one of a size, an average weight and a shape from the first plurality of abrasive particles. The second section is configured to receive the second plurality of abrasive particles and pass the second plurality of abrasive particles through one or more of the plurality of slots to the backing.
    Type: Application
    Filed: December 15, 2017
    Publication date: March 19, 2020
    Inventors: Yuyang Liu, Junting Li, Geoffrey I. Wilson, Ernest L. Thurber
  • Publication number: 20200070315
    Abstract: An abrasive article includes a backing, abrasive particles secured to the backing, and a size coat provided over the abrasive particles, the size coat comprises a binder resin, at least one filler material and at least one lubricant material having a melting temperature of at least about 200 degrees F. A method of grinding aluminum using such an abrasive article is also described.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 5, 2020
    Inventors: Jaime A. Martinez, Jing Zhang, Geoffrey I. Wilson, Stacy A. Sommer, Louis S. Moren
  • Publication number: 20190337124
    Abstract: In methods and systems of making an abrasive article, abrasive particles are loaded to a distribution tool including a plurality of upper walls defining a plurality of spacing slots, and a plurality of lower walls defining a plurality of distribution slots. The spacing slots are open to the distribution slots, which are open to a lower side of the tool. The loaded particles are spaced and distributed from the distribution tool to a major face of a backing web below the lower side and moving relative to the tool in a machine direction. The upper walls space the particles in the machine direction. The particles distributed by the lower walls undergo an orientation sequence in which each particle is oriented into a column aligned along the machine direction. The upper walls can be disposed oblique to the lower walls. The upper and lower walls can have pointed upper portions.
    Type: Application
    Filed: December 15, 2017
    Publication date: November 7, 2019
    Inventors: Yuyang Liu, Junting Li, Geoffrey I. Wilson, Ernest L. Thurber
  • Publication number: 20190329381
    Abstract: An abrasive article includes a first plurality of abrasive particles and a second plurality of abrasive particles. The first plurality of abrasive particles differ in at least one of a size, an average weight and a shape from the second plurality of abrasive particles. The first plurality of abrasive particles are spaced from the second plurality of abrasive particles by at least a minimum distance in the x-axis direction, and both the first plurality of abrasive particles and the second plurality of abrasive particles extend in similar paths to one another with respect to the y-axis.
    Type: Application
    Filed: December 15, 2017
    Publication date: October 31, 2019
    Inventors: Yuyang Liu, Geoffrey I. Wilson, Junting Li, Ernest L. Thurber
  • Publication number: 20180318983
    Abstract: Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of walls defining a plurality of slots. Each slot is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side and moving relative to the tool. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the slots. The particle then passes partially through the slot such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the slot. The sequence then includes the particle remaining in simultaneous contact with one of the walls and the major face for a dwell period while the web moves relative to the tool.
    Type: Application
    Filed: June 15, 2016
    Publication date: November 8, 2018
    Inventors: Geoffrey I. Wilson, Mark R. Nyberg, Jeffery S. Thomford, Ernest L. Thurber, Brian G. Koethe, Charles C. Drange, Robert J. Hnatyk, John T. Boden
  • Publication number: 20180169836
    Abstract: Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of strips defining a plurality of channels. Each channel is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the channels. The particle then passes partially through the channel such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the channel. The sequence then includes the particle remaining in simultaneous contact with one of the strips and the major face for a dwell period.
    Type: Application
    Filed: July 1, 2016
    Publication date: June 21, 2018
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert