Patents by Inventor Geoffrey Lynn Burdge

Geoffrey Lynn Burdge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7755755
    Abstract: A method is provided for identifying a contaminant in a gaseous space. The method includes: generating a broadband optical waveform; shaping the optical waveform to match an expected waveform for a known contaminant; and transmitting the shaped optical waveform towards an unknown contaminant. Upon receiving a reflected optical waveform from the unknown contaminant, determining whether the unknown contaminant correlates to the known contaminant based on the reflected waveform.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: July 13, 2010
    Assignees: Harris Corporation, Lucents Technologies Inc., University of Central Florida Foundations, Inc.
    Inventors: John Richard DeSalvo, Geoffrey Lynn Burdge, Bruce W. FitzGerald, Young-Kai Chen, Andreas Leven, Peter Delfyett
  • Publication number: 20080195335
    Abstract: A method is provided for identifying a contaminant in a gaseous space. The method includes: generating a broadband optical waveform; shaping the optical waveform to match an expected waveform for a known contaminant; and transmitting the shaped optical waveform towards an unknown contaminant. Upon receiving a reflected optical waveform from the unknown contaminant, determining whether the unknown contaminant correlates to the known contaminant based on the reflected waveform.
    Type: Application
    Filed: February 14, 2007
    Publication date: August 14, 2008
    Inventors: John Richard DeSalvo, Geoffrey Lynn Burdge, Bruce W. FitzGerald, Young-Kai Chen, Andreas Leven, Peter Delfyett
  • Publication number: 20020141041
    Abstract: A method of an apparatus for compensating optical non-linearity in optical devices and transmission systems. Two second order interactions are cascaded in phase-mismatched second harmonic generation to accumulate a non-linear phase shift of a fundamental wave. The non-linear phase shift can be set to provide a desired amount of non-linearity compensation. Compensation takes place in a compensating medium having a negative effective non-linear refractive index at the design operating conditions of the compensating medium. Compensators incorporating these principles may be incorporated as passive or active components in optical transmitters, repeaters or receivers. Active components may be tuned by varying the operating condition of the compensating medium, for example by controlling temperature or applied stress.
    Type: Application
    Filed: August 10, 2001
    Publication date: October 3, 2002
    Inventors: David Neil Payne, Shaif-Ul Alam, Geoffrey Lynn Burdge, Anatoly Borisovich Grudinin