Patents by Inventor Geoffroy Hautier

Geoffroy Hautier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916190
    Abstract: A method for producing a solid electrolyte for an all-solid state battery, the solid electrolyte having the following chemical formula XM2(PS4)3, where X is lithium (Li), sodium (Na), silver (Ag) or magnesium (Mg0,5) and M is titanium (Ti), zirconium (Zr), germanium (Ge), silicon (Si), tin (Sn) or a mixture of X and aluminium (X+Al) and the method including: mixing powders so as to obtain a powder mixture; pressing a component with powder mixture; and sintering component for a period of time equal to or greater than 100 hours so as to obtain the solid electrolyte. The solid electrolyte exhibits the peaks in positions of 2?=13.64° (±1°), 13.76° (±1°), 14.72° (±1°), 15.36° (±1°), 15.90° (±1°), 16.48° (±1°), 17.42° (±1°), 17.56° (±1°), 18.58° (±1°), and 22.18° (±1°) in a X-ray diffraction measurement using CuK? line. The disclosure is also related to a method of producing a solid electrolyte.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: February 27, 2024
    Assignee: TOYOTA MOTOR EUROPE
    Inventors: Yuki Katoh, Geoffroy Hautier, Davide Di Stefano, Yaroslav Filinchuk
  • Patent number: 11370670
    Abstract: The present invention relates to a compound represented by the general formula Li2+2xM1?xZS4, wherein 0.3?x?0.9; wherein M is one or more elements selected from the group consisting of Pb, Mg, Ca, Ge and Sn; and wherein Z is one or more elements selected from the group consisting of Ge, Si, Sn and Al. The present invention also relates to a method for preparing the material of the present invention, comprising the steps of: (a) providing a mixture of lithium sulfide Li2S, sulfides MS and ZS2, in a stoichiometric ratio ensuring Li2+2xM1?xZS4 to be obtained, wherein M, Z and x are as defined above; (b) pelletizing the mixture prepared in step (a); (c) heating at a maximum plateau temperature. In still another aspect, the present invention relates to a use of the compound of the present invention as a solid electrolyte, in particular in an all solid-state lithium battery.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: June 28, 2022
    Assignee: TOYOTA MOTOR EUROPE
    Inventors: Yuki Katoh, Geoffroy Hautier, Anna Miglio
  • Patent number: 11063293
    Abstract: A compound represented by the general formula Li(Ti1-xZrx)2(PS4)3, wherein 0.01?x?0.25, and found to have high ionic conductivity; a use of the compound as a solid electrolyte, in particular in an all solid-state lithium battery.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: July 13, 2021
    Assignee: TOYOTA MOTOR EUROPE
    Inventors: Yuki Katoh, Geoffroy Hautier, Anna Miglio
  • Publication number: 20210155494
    Abstract: The present invention relates to a compound represented by the general formula Li2+2xM1-xZS4, wherein 0.3?x?0.9; wherein M is one or more elements selected from the group consisting of Pb, Mg, Ca, Ge and Sn; and wherein Z is one or more elements selected from the group consisting of Ge, Si, Sn and Al. The present invention also relates to a method for preparing the material of the present invention, comprising the steps of: (a) providing a mixture of lithium sulfide Li2S, sulfides MS and ZS2, in a stoichiometric ratio ensuring Li2+2xM1-xZS4 to be obtained, wherein M, Z and x are as defined above; (b) pelletizing the mixture prepared in step (a); (c) heating at a maximum plateau temperature. In still another aspect, the present invention relates to a use of the compound of the present invention as a solid electrolyte, in particular in an all solid-state lithium battery.
    Type: Application
    Filed: July 5, 2017
    Publication date: May 27, 2021
    Inventors: Yuki KATOH, Geoffroy HAUTIER, Anna MIGLIO
  • Patent number: 10957901
    Abstract: This disclosure provides a positive electrode active lithium-excess metal oxide with composition LixMyO2 (0.6?y?0.85 and 0?x+y?2) for a lithium secondary battery with a high reversible capacity that is insensitive with respect to cation-disorder. The material exhibits a high capacity without the requirement of overcharge during the first cycles.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 23, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Jinhyuk Lee, Alexander Urban, Xin Li, Sangtae Kim, Geoffroy Hautier
  • Publication number: 20210005925
    Abstract: A solid electrolyte material for a solid state battery (10) having the following chemical formula XM2(PS4)3, where P is phosphorus, S is sulfur and X is lithium (Li), sodium (Na), silver (Ag) or magnesium (Mg0.5) and M is titanium (Ti), zirconium (Zr), germanium (Ge), silicon (Si), tin (Sn) or a mixture of X and aluminium (X+Al) and exhibiting peaks in positions of 2?=13.64° (±1°), 16.48° (±1°) and 22.18° (±1°) in a X-ray diffraction measurement using CuK? line, where IA is the intensity in arbitrary units of the peak at 13.64° (±1°) and IB is the intensity in arbitrary units of a peak at 23.34° (±1°), (IA?IB)/(IA+IB)>0. The disclosure is also related to a solid electrolyte comprising the solid electrolyte material and a solid state battery comprising the solid electrolyte.
    Type: Application
    Filed: March 26, 2018
    Publication date: January 7, 2021
    Inventors: Yuki KATOH, Geoffroy HAUTIER, Davide DISTEFANO, Yaroslav FILINCHUK
  • Publication number: 20200411904
    Abstract: A method for producing a solid electrolyte for an all-solid state battery, the solid electrolyte having the following chemical formula XM2(PS4)3, where X is lithium (Li), sodium (Na), silver (Ag) or magnesium (Mg0.5) and M is titanium (Ti), zirconium (Zr), germanium (Ge), silicon (Si), tin (Sn) or a mixture of X and aluminium (X+Al) and the method including: mixing powders so as to obtain a powder mixture; pressing a component with powder mixture; and sintering component for a period of time equal to or greater than 100 hours so as to obtain the solid electrolyte. The solid electrolyte exhibits the peaks in positions of 2?=13.64° (±1°), 13.76° (±1°), 14.72° (±1°), 15.36° (±1°), 15.90° (±1°), 16.48° (±1°), 17.42° (±1°), 17.56° (±1°), 18.58° (±1°), and 22.18° (±1°) in a X-ray diffraction measurement using CuK? line. The disclosure is also related to a method of producing a solid electrolyte.
    Type: Application
    Filed: March 26, 2018
    Publication date: December 31, 2020
    Applicant: TOYOTA MOTOR EUROPE
    Inventors: Yuki KATOH, Geoffroy HAUTIER, Davide DI STEFANO, Yaroslav FILINCHUK
  • Publication number: 20200185699
    Abstract: A method (100) for producing a sintered component being a solid electrolyte and/or an electrode including sulfur for an all-solid state battery, the method including mixing powders (102) so as to obtain a powder mixture, at least one of the powders comprising sulfur, pressing (106) a component with the powder mixture and sintering (108) the component under a partial pressure of sulfur comprised between 150 Pa and 0.2 MPa so as to obtain a sintered component comprising sulfur, the sintered component exhibiting the peaks in positions of 2?=15.08° (±0.50°), 15.28° (±0.50°), 15.92° (±0.50°), 17.5° (±0.50°), 18.24° (±0.50°), 20.30° (±0.50°, 23.44° (±0.50°), 24.48° (±0.50°), and 26.66° (±0.50°) in a X-ray diffraction measurement using CuK? line.
    Type: Application
    Filed: August 4, 2017
    Publication date: June 11, 2020
    Applicant: TOYOTA MOTOR EUROPE
    Inventors: Yuki KATOH, Geoffroy HAUTIER, Anna MIGLIO
  • Publication number: 20190229369
    Abstract: A compound represented by the general formula Li(Ti1-xZrx)2(PS4)3, wherein 0.01?x?0.25, and found to have high ionic conductivity; a use of the compound as a solid electrolyte, in particular in an all solid-state lithium battery.
    Type: Application
    Filed: October 28, 2016
    Publication date: July 25, 2019
    Applicant: TOYOTA MOTOR EUROPE
    Inventors: Yuki KATOH, Geoffroy HAUTIER, Anna MIGLIO
  • Publication number: 20180053934
    Abstract: This disclosure provides a positive electrode active lithium-excess metal oxide with composition LixMyO2 (0.6?y?0.85 and 0?x+y?2) for a lithium secondary battery with a high reversible capacity that is insensitive with respect to cation-disorder. The material exhibits a high capacity without the requirement of overcharge during the first cycles.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 22, 2018
    Inventors: Gerbrand Ceder, Jinhyuk Lee, Alexander Urban, Xin Li, Sangtae Kim, Geoffroy Hautier
  • Patent number: 9780363
    Abstract: This disclosure provides a positive electrode active lithium-excess metal oxide with composition LixMyO2 (0.6?y?0.85 and 0?x+y?2) for a lithium secondary battery with a high reversible capacity that is insensitive with respect to cation-disorder. The material exhibits a high capacity without the requirement of overcharge during the first cycles.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: October 3, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Jinhyuk Lee, Alexander Urban, Xin Li, Sangtae Kim, Geoffroy Hautier
  • Patent number: 9172090
    Abstract: The present invention generally relates to certain lithium materials, including lithium manganese borate materials. Such materials are of interest in various applications such as energy storage. Certain aspects of the invention are directed to lithium manganese borate materials, for example, having the formula LixMny(BO3). In some cases, the lithium manganese borate materials may include other elements, such as iron, magnesium, copper, zinc, calcium, etc. The lithium manganese borate materials, according to one set of embodiments, may be present as a monoclinic crystal system. Such materials may surprisingly exhibit relatively high energy storage capacities, for example, at least about 96 mA h/g. Other aspects of the invention relate to devices comprising such materials, methods of making such materials, kits for making such materials, methods of promoting the making or use of such materials, and the like.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: October 27, 2015
    Assignee: Massachusetts Institute of Technoloy
    Inventors: Gerbrand Ceder, Jae Chul Kim, ByoungWoo Kang, Charles J. Moore, Geoffroy Hautier
  • Patent number: 9159991
    Abstract: This invention relates generally to electrode materials, electrochemical cells employing such materials, and methods of synthesizing such materials. The electrode materials have a crystal structure with a high ratio of Li to metal M, which is found to improve capacity by enabling the transfer of a greater amount of lithium per metal, and which is also found to improve stability by retaining a sufficient amount of lithium after charging. Furthermore, synthesis techniques are presented which result in improved charge and discharge capacities and reduced particle sizes of the electrode materials.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: October 13, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Anubhav Jain, Geoffroy Hautier, Jae Chul Kim, Byoungwoo Kang, Robert Daniel
  • Patent number: 8999282
    Abstract: The present invention generally relates to carbophosphates and other compounds. Such compounds may be used in batteries and other electrochemical devices, or in other applications such as those described herein. One aspect of the invention is generally directed to carbophosphate compounds, i.e., compounds containing carbonate and phosphate ions. For example, according to one set of embodiments, the compound has a formula Ax(M)(PO4)a(CO3)b, where M comprises one or more cations. A may include one or more alkali metals, for example, lithium and/or sodium. In some cases, x is greater than about 0.1, a is between about 0.1 and about 5.1, and b is between about 0.1 and about 5.1. In certain embodiments, the compound may have a unit cell atomic arrangement that is isostructural to unit cells of the minerals sidorenkite, bonshtedtite, bradleyite, crawfordite, or ferrotychite.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: April 7, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Hailong Chen, Robert E. Doe, Geoffroy Hautier, Anubhav Jain, ByoungWoo Kang
  • Publication number: 20150023857
    Abstract: One embodiment provides a method, comprising: calculating, using at least one computer, a distance to a hull for an alloy XxY1-x in the range 0.01?x?0.99, where X and Y are perovskite materials; determining, using the at least one computer, a preferred phase for the alloy in the range 0.01?x?0.99; and selecting an alloy composition having the distance to the hull being less than 0.1 eV/atom and for which the preferred phase in at least a portion of the range 0.01?x?0.99 is a tetragonal phase. Piezoelectric materials as selected by the method are also provided.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Applicants: Massachusetts Institute of Technology, Central Michigan University, Robert Bosch LLC Research and Technology Center
    Inventors: Rickard Roberto ARMIENTO, Gerbrand CEDER, Marco FORNARI, Geoffroy HAUTIER, Boris KOZINSKY
  • Publication number: 20140246619
    Abstract: In general, the invention relates to electrode materials, e.g., novel cathode materials with high density, low cost, and high safety. A voltage design strategy based on the mixing of different transition metals in crystal structures known to be able to accommodate lithium in insertion and delithiation is presented herein. By mixing a metal active on the +2/+3 couple (e.g., Fe) with an element active on the +3/+5 or +3/+6 couples (e.g., V or Mo), high capacity multi-electron cathodes are designed in an adequate voltage window.
    Type: Application
    Filed: January 10, 2014
    Publication date: September 4, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Geoffroy Hautier, Anubhav Jain, Timothy Keith Mueller, Gerbrand Ceder
  • Publication number: 20140099549
    Abstract: This disclosure provides a positive electrode active lithium-excess metal oxide with composition LixMyO2 (0.6?y?0.85 and 0?x+y?2) for a lithium secondary battery with a high reversible capacity that is insensitive with respect to cation-disorder. The material exhibits a high capacity without the requirement of overcharge during the first cycles.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 10, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Jinhyuk Lee, Alexander Urban, Xin Li, Sangtae Kim, Geoffroy Hautier
  • Publication number: 20130273425
    Abstract: This invention relates generally to electrode materials, electrochemical cells employing such materials, and methods of synthesizing such materials. The electrode materials have a crystal structure with a high ratio of Li to metal M, which is found to improve capacity by enabling the transfer of a greater amount of lithium per metal, and which is also found to improve stability by retaining a sufficient amount of lithium after charging. Furthermore, synthesis techniques are presented which result in improved charge and discharge capacities and reduced particle sizes of the electrode materials.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 17, 2013
    Inventors: Gerbrand Ceder, Anubhav Jain, Geoffroy Hautier, Jae Chul Kim, Byoungwoo Kang, Robert Daniel
  • Publication number: 20130099174
    Abstract: The present invention generally relates to certain lithium materials, including lithium manganese borate materials. Such materials are of interest in various applications such as energy storage. Certain aspects of the invention are directed to lithium manganese borate materials, for example, having the formula LixMny(BO3). In some cases, the lithium manganese borate materials may include other elements, such as iron, magnesium, copper, zinc, calcium, etc. The lithium manganese borate materials, according to one set of embodiments, may be present as a monoclinic crystal system. Such materials may surprisingly exhibit relatively high energy storage capacities, for example, at least about 96 mA h/g. Other aspects of the invention relate to devices comprising such materials, methods of making such materials, kits for making such materials, methods of promoting the making or use of such materials, and the like.
    Type: Application
    Filed: May 5, 2011
    Publication date: April 25, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Gerbrand Ceder, Jae Chul Kim, ByoungWoo Kang, Charles J. Moore, Geoffroy Hautier
  • Patent number: 8399130
    Abstract: This invention relates generally to electrode materials, electrochemical cells employing such materials, and methods of synthesizing such materials. The electrode materials have a crystal structure with a high ratio of Li to metal M, which is found to improve capacity by enabling the transfer of a greater amount of lithium per metal, and which is also found to improve stability by retaining a sufficient amount of lithium after charging. Furthermore, synthesis techniques are presented which result in improved charge and discharge capacities and reduced particle sizes of the electrode materials.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: March 19, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Anubhav Jain, Geoffroy Hautier, Jae Chul Kim, Byoungwoo Kang, Robert Daniel