Patents by Inventor Geon Woong Lee

Geon Woong Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136674
    Abstract: Disclosed is an electrode assembly, a battery, and a battery pack and a vehicle including the same. In the electrode assembly, a first electrode, a second electrode, and a separator interposed therebetween are wound based on a winding axis to define a core and an outer circumference. The first electrode includes a first active material portion coated with an active material layer and a first uncoated portion not coated with an active material layer along a winding direction. At least a part of the first uncoated portion is defined as an electrode tab by itself. The first uncoated portion includes a first portion adjacent to the core of the electrode assembly, a second portion adjacent to the outer circumference of the electrode assembly, and a third portion interposed between the first portion and the second portion. The first portion or the second portion has a smaller height than the third portion in the winding axis direction.
    Type: Application
    Filed: January 19, 2022
    Publication date: April 25, 2024
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Jong-Sik PARK, Jae-Won LIM, Yu-Sung CHOE, Hak-Kyun KIM, Je-Jun LEE, Byoung-Gu LEE, Duk-Hyun RYU, Kwan-Hee LEE, Jae-Eun LEE, Pil-Kyu PARK, Kwang-Su HWANGBO, Do-Gyun KIM, Geon-Woo MIN, Hae-Jin LIM, Min-Ki JO, Su-Ji CHOI, Bo-Hyun KANG, Jae-Woong KIM, Ji-Min JUNG, Jin-Hak KONG, Soon-O LEE, Kyu-Hyun CHOI
  • Publication number: 20240136664
    Abstract: A battery includes an electrode assembly including a first electrode, a second electrode and a separator between the first electrode and the second electrode, the first electrode, the second electrode and the separator being wound around a winding axis to define a core and an outer peripheral surface. The first electrode and the second electrode include a first uncoated region and a second uncoated region along a winding direction, respectively, and an active material layer coating is absent in the first uncoated region and the second uncoated region. The battery further includes a housing receiving the electrode assembly through an opening formed at a bottom, a first current collector coupled to the first uncoated region and disposed within the housing, a cap covering the opening, a spacer interposed between the cap and the electrode assembly to fix the electrode assembly and seal the housing, and a terminal electrically connected to the second uncoated region.
    Type: Application
    Filed: February 18, 2022
    Publication date: April 25, 2024
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Min-Ki JO, Bo-Hyun KANG, Do-Gyun KIM, Su-Ji CHOI, Kwang-Su HWANGBO, Hae-Jin LIM, Jae-Won LIM, Hak-Kyun KIM, Je-Jun LEE, Ji-Min JUNG, Geon-Woo MIN, Jae-Woong KIM
  • Publication number: 20240128605
    Abstract: Provided are an electrode assembly, a battery, and a battery pack and vehicle including the same. An electrode assembly, in which a first electrode, a second electrode, and a separator interposed therebetween are wound about an axis to define a core and an outer circumferential surface. At least one of the first electrode and the second electrode includes, at a long side end portion, an uncoated portion exposed beyond the separator in a direction of the axis. At least a part of the uncoated portion is bent in a radial direction of the electrode assembly to define a bent surface region having overlapping layers of the uncoated portion. The bent surface region includes a welding target region having a number of the overlapping layers of the uncoated portion, and the welding target region extends along a radial direction of the electrode assembly.
    Type: Application
    Filed: February 18, 2022
    Publication date: April 18, 2024
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Min-Woo KIM, Do-Gyun KIM, Kyung-Wook CHO, Geon-Woo MIN, Min-Ki JO, Jae-Woong KIM, Kwang-Su HWANGBO, Hae-Jin LIM, Su-Ji CHOI, Jae-Won LIM, Hak-Kyun KIM, Je-Jun LEE, Ji-Min JUNG
  • Publication number: 20240128608
    Abstract: A battery includes an electrode assembly including a first uncoated region and a second uncoated region; a battery housing accommodating the electrode assembly and electrically connected to the second uncoated region; a cap to cover an open portion on bottom of the battery housing; a first electrode terminal passing through a partially closed portion of the battery housing and being electrically isolated from the battery housing; and a first current collector coupled to the first uncoated region and connected to the first electrode terminal.
    Type: Application
    Filed: February 18, 2022
    Publication date: April 18, 2024
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Bo-Hyun KANG, Do-Gyun KIM, Geon-Woo MIN, Min-Ki JO, Su-Ji CHOI, Kwang-Su HWANGBO, Jae-Woong KIM, Jae-Won LIM, Hak-Kyun KIM, Je-Jun LEE, Ji-Min JUNG
  • Publication number: 20240128517
    Abstract: Disclosed is an electrode assembly, a battery, and a battery pack and a vehicle including the same. In the electrode assembly, a first electrode, a second electrode, and a separator interposed therebetween are wound based on an axis to define a core and an outer circumference. The first electrode includes an uncoated portion at a long side end thereof and exposed out of the separator along a winding axis direction of the electrode assembly. A part of the uncoated portion is bent in a radial direction of the electrode assembly to form a bending surface region that includes overlapping layers of the uncoated portion, and in a partial region of the bending surface region, the number of stacked layers of the uncoated portion is 10 or more in the winding axis direction of the electrode assembly.
    Type: Application
    Filed: January 19, 2022
    Publication date: April 18, 2024
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Hae-Jin LIM, Jin-Hak KONG, Soon-O LEE, Kyu-Hyun CHOI, Do-Gyun KIM, Su-Ji CHOI, Kwang-Su HWANGBO, Geon-Woo MIN, Min-Ki JO, Jae-Won LIM, Hak-Kyun KIM, Je-Jun LEE, Ji-Min JUNG, Jae-Woong KIM, Jong-Sik PARK, Yu-Sung CHOE, Byoung-Gu LEE, Duk-Hyun RYU, Kwan-Hee LEE, Jae-Eun LEE, Bo-Hyun KANG, Pil-Kyu PARK
  • Patent number: 11742473
    Abstract: The present invention relates to a reduced-graphene-oxide/silicon-metal-particle composite, a method of manufacturing the composite and an electrode for a secondary battery including the composite. The method of manufacturing the reduced-graphene-oxide/silicon-metal-particle composite includes preparing a reduced-graphene-oxide dispersion solution by reducing graphene oxide formed through cation-pi interaction, preparing a reduced-graphene-oxide/silicon-metal-particle dispersion solution by mixing the reduced-graphene-oxide dispersion solution with silicon metal particles, and manufacturing a composite powder having a core-shell structure by drying the reduced-graphene-oxide/silicon-metal-particle dispersion solution. Thereby, reduced graphene oxide can be formed using the graphene oxide dispersion solution having few defects and high purity obtained through cation-pi interaction, and dried to afford a composite powder having a core-shell structure, which is applicable to an electrode for a secondary battery.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: August 29, 2023
    Inventors: Seung Yol Jeong, Geon Woong Lee, Jong Hwan Park, Sun Hye Yang, Soo Yeon Jeong, Ick Jun Kim, Seon Hee Seo, Hye Jung Lee, Hee Jin Jeong, Joong Tark Han
  • Publication number: 20220243365
    Abstract: The present invention relates to a high heat-resistant graphene oxide, a method of manufacturing conductive graphene fiber from the same, and conductive graphene fiber manufactured by the method. The technical gist of the present invention is to provide high heat-resistant graphene oxide not having an oxygen-containing functional group such as a lactol group or a carboxyl group on the surface but having an oxygen-containing functional group such as an epoxy group or a hydroxyl group on the surface, thereby exhibiting thermal resistance and stability. In addition, the technical gist is also to provide a method of manufacturing conductive graphene fiber from the high heat-resistant graphene oxide and conductive graphene fiber manufactured by the method.
    Type: Application
    Filed: March 24, 2022
    Publication date: August 4, 2022
    Inventors: Joong Tark HAN, Jung Hoon KIM, Joon Young CHO, Geon Woong LEE, Jong Hwan PARK, Seon Hee SEO, Soo Yeon JEONG, Seung Yol JEONG, Hee Jin JEONG
  • Patent number: 11137242
    Abstract: A conductive fiber including a metal-nanobelt-carbon-nanomaterial composite. A manufacturing method thereof includes preparing a composite including a carbon nanomaterial and metal nanobelts and manufacturing a conductive fiber by mixing the composite with a polymer. A fibrous strain sensor and a manufacturing method thereof are also provided. Thereby, a conductive fiber including a metal-nanobelt-carbon-nanomaterial composite, which is able to increase conductivity of the conductive fiber through synthesis of metal nanobelts enabling area contact and to exhibit good contact between the carbon nanomaterial and the metal nanobelts due to formation of the metal nanobelts on the surface of the carbon nanomaterial and superior dispersion uniformity, and a fibrous strain sensor including the conductive fiber can be obtained.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: October 5, 2021
    Inventors: Joong Tark Han, Geon Woong Lee, Seon Hee Seo, Jeong In Jang, Seung Yol Jeong, Hee Jin Jeong
  • Publication number: 20200295344
    Abstract: The present invention relates to a reduced-graphene-oxide/silicon-metal-particle composite, a method of manufacturing the composite and an electrode for a secondary battery including the composite. The method of manufacturing the reduced-graphene-oxide/silicon-metal-particle composite includes preparing a reduced-graphene-oxide dispersion solution by reducing graphene oxide formed through cation-pi interaction, preparing a reduced-graphene-oxide/silicon-metal-particle dispersion solution by mixing the reduced-graphene-oxide dispersion solution with silicon metal particles, and manufacturing a composite powder having a core-shell structure by drying the reduced-graphene-oxide/silicon-metal-particle dispersion solution. Thereby, reduced graphene oxide can be formed using the graphene oxide dispersion solution having few defects and high purity obtained through cation-pi interaction, and dried to afford a composite powder having a core-shell structure, which is applicable to an electrode for a secondary battery.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Seung Yol JEONG, Geon Woong LEE, Jong Hwan PARK, Sun Hye YANG, Soo Yeon JEONG, Ick Jun KIM, Seon Hee SEO, Hye Jung LEE, Hee Jin JEONG, Joong Tark HAN
  • Patent number: 10660166
    Abstract: The microwave heating apparatus of the present invention enables microwaves to be propagated onto an object to be heated through a waveguide such that the microwaves propagate to a microwave space reduced by a wavelength controller which is arranged, as a solid-state object, to occupy a predetermined space in the waveguide. Thus, the microwave heating apparatus of the present invention heats the object to be heated which has been placed in the reduced space. The microwave heating apparatus of the present invention utilizes the effects of lengthening the wavelength of the microwaves propagating to the reduced space so as to be longer than the wavelength before entering the reduced space by a predetermined multiple depending on a near-cutoff condition.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: May 19, 2020
    Assignee: KOREA ELECTROTECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sun Shin Jung, Dae Ho Kim, Seung Kwon Seol, Geon Woong Lee, Won Suk Chang, Seung Yol Jeong, Hee Jin Jeong, Joong Tark Han
  • Patent number: 10421123
    Abstract: A method for manufacturing a conductive film, the method comprising the steps of: preparing a mixture liquid in which a catalytic metal is dispersed in a precursor or a precursor compound of a two-dimensional nanomaterial; and forming a catalytic metal/two-dimensional nanomaterial by irradiating the mixture liquid with ultrasonic waves to generate microbubbles, degrading the precursor compound using energy, which is generated when the microbubbles burst, to synthesize the two-dimensional nanomaterial on an outer wall of the catalytic metal, wherein the method further comprises: dispersing the catalytic metal/two-dimensional nanomaterial in a dispersion to prepare ink; and applying the ink on a substrate and performing rapid air-sintering. Thus, the two-dimensional nanomaterial is synthesized on an outer wall of a non-noble metal having high oxidative characteristics, thereby preventing oxidation of the metal from air and increasing thermal conductivity and electrical conductivity.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 24, 2019
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hee Jin Jeong, Geon Woong Lee, Ho Young Kim, Kang Jun Baeg, Seung Yol Jeong, Joong Tark Han
  • Patent number: 10351433
    Abstract: The present invention relates to a graphene oxide reduced material dispersed at a high concentration by a cation-? interaction and to a method for manufacturing same, and more particularly to a method for manufacturing a graphene oxide reduced material dispersed in a high concentration by a cation-? interaction comprising: a first step of synthesizing graphite oxide flakes in a powder state from graphite flakes in a powder state; a second step of forming a graphene oxide dispersion solution by dispersing the graphite oxide flakes of the first step into a solvent; a third step of preparing a cation reaction graphene oxide dispersion solution through the interaction of a cation and a ?-structure in an sp2 region by positioning the cation at the center of an arrangement of carbon atoms connected by sp2 bonding in two dimensions in the dispersion solution formed in the second step; and a fourth step of preparing a cation reaction graphene oxide reduced material by reducing the cation reaction graphene oxide dispe
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: July 16, 2019
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Seung-yol Jeong, Geon-woong Lee, Joong-tark Han, Hee-jin Jeong, Sung-hun Kim
  • Publication number: 20190094005
    Abstract: A conductive fiber including a metal-nanobelt-carbon-nanomaterial composite. A manufacturing method thereof includes preparing a composite including a carbon nanomaterial and metal nanobelts and manufacturing a conductive fiber by mixing the composite with a polymer. A fibrous strain sensor and a manufacturing method thereof are also provided. Thereby, a conductive fiber including a metal-nanobelt-carbon-nanomaterial composite, which is able to increase conductivity of the conductive fiber through synthesis of metal nanobelts enabling area contact and to exhibit good contact between the carbon nanomaterial and the metal nanobelts due to formation of the metal nanobelts on the surface of the carbon nanomaterial and superior dispersion uniformity, and a fibrous strain sensor including the conductive fiber can be obtained.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Inventors: Joong Tark Han, Geon Woong Lee, Seon Hee Seo, Jeong In Jang, Seung Yol Jeong, Hee Jin Jeong
  • Patent number: 10184059
    Abstract: Disclosed are a nanometal-nanocarbon hybrid material and a method of manufacturing the same, the method including modifying the surface of nanocarbon to introduce a functional group to conductive nanocarbon; mixing the surface-modified nanocarbon with an isocyanate-based compound and a pyrimidine-based compound and allowing them to react, thus forming a nanocarbon dispersion reactive to metal ions; adding the nanocarbon dispersion with a metal salt precursor, a reducing agent and a solvent, thus manufacturing nanometal particles; and separating a hybrid of the nanometal particles having the nanocarbon bound thereto. Thereby, nanocarbon is mixed with an isocyanate-based compound and a pyrimidine-based compound and then allowed to react, whereby the nanocarbon reactive with metal ions is used as an additive, thus obtaining a nanometal having a low-dimensional shape having less than three dimensions.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 22, 2019
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Joong Tark Han, Geon Woong Lee, Jeong In Jang, Seung Yol Jeong, Hee Jin Jeong, Seon Hee Seo
  • Patent number: 10100209
    Abstract: Disclosed is a method of manufacturing a work function-controlled carbon nanomaterial and metal nanowire hybrid transparent conductive film, including: a first step of modifying the surface of a carbon nanomaterial to introduce a functional group to a conductive carbon nanomaterial; a second step of forming a work function-reduced carbon nanomaterial dispersed solution by mixing and reacting the carbon nanomaterial, which is functionalized in the first step, with an isocyanate-based compound and a pyrimidine-based compound; a third step of forming a single-component coating solution by hybridizing the work function-reduced carbon nanomaterial dispersed solution obtained in the second step with a metal nanowire; and a fourth step of forming a film by applying the coating solution, which is formed in the third step, on a substrate.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: October 16, 2018
    Assignee: KOREA ELECTROTECHNOLOGY RESEARCH INSTITUTE
    Inventors: Joong-tark Han, Geon-woong Lee, Kang-jun Baeg, Jong-seuk Woo, Seung-yol Jeong, Hee-jin Jeong
  • Publication number: 20180133794
    Abstract: A method for manufacturing a conductive film, the method comprising the steps of: preparing a mixture liquid in which a catalytic metal is dispersed in a precursor or a precursor compound of a two-dimensional nanomaterial; and forming a catalytic metal/two-dimensional nanomaterial by irradiating the mixture liquid with ultrasonic waves to generate microbubbles, degrading the precursor compound using energy, which is generated when the microbubbles burst, to synthesize the two-dimensional nanomaterial on an outer wall of the catalytic metal, wherein the method further comprises: dispersing the catalytic metal/two-dimensional nanomaterial in a dispersion to prepare ink; and applying the ink on a substrate and performing rapid air-sintering. Thus, the two-dimensional nanomaterial is synthesized on an outer wall of a non-noble metal having high oxidative characteristics, thereby preventing oxidation of the metal from air and increasing thermal conductivity and electrical conductivity.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Hee Jin Jeong, Geon Woong Lee, Ho Young Kim, Kang Jun Baeg, Seung Yol Jeong, Joong Tark Han
  • Patent number: 9873811
    Abstract: The present invention relates to a highly conductive material formed by hybridization of a metal nanomaterial and a carbon nanomaterial having a higher-order structure due to multiple hydrogen bonding, and to a manufacturing method therefor. The technical essence of the present invention is a highly conductive material formed by hybridization of a metal nanomaterial and a carbon nanomaterial having a higher-order structure due to multiple hydrogen bonding the invention involving: forming a carbon nanomaterial having a higher-order structure due to multiple hydrogen bonding between conductive carbon nanomaterials by introducing a functional group capable of multiple hydrogen bonding to the carbon nanomaterials; forming a composite material by mixing the carbon nanomaterial having a higher-order structure and a metal nanomaterial.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 23, 2018
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Joong-tark Han, Geon-woong Lee, Kang-jun Baeg, Bo-hwa Jeong, Seung-yol Jeong, Hee-jin Jeong
  • Publication number: 20170073817
    Abstract: Disclosed are a nanometal-nanocarbon hybrid material and a method of manufacturing the same, the method including modifying the surface of nanocarbon to introduce a functional group to conductive nanocarbon; mixing the surface-modified nanocarbon with an isocyanate-based compound and a pyrimidine-based compound and allowing them to react, thus forming a nanocarbon dispersion reactive to metal ions; adding the nanocarbon dispersion with a metal salt precursor, a reducing agent and a solvent, thus manufacturing nanometal particles; and separating a hybrid of the nanometal particles having the nanocarbon bound thereto. Thereby, nanocarbon is mixed with an isocyanate-based compound and a pyrimidine-based compound and then allowed to react, whereby the nanocarbon reactive with metal ions is used as an additive, thus obtaining a nanometal having a low-dimensional shape having less than three dimensions.
    Type: Application
    Filed: November 29, 2016
    Publication date: March 16, 2017
    Inventors: Joong Tark Han, Geon Woong Lee, Jeong In Jang, Seung Yol Jeong, Hee Jin Jeong, Seon Hee Seo
  • Publication number: 20160222227
    Abstract: Disclosed is a method of manufacturing a work function-controlled carbon nanomaterial and metal nanowire hybrid transparent conductive film, including: a first step of modifying the surface of a carbon nanomaterial to introduce a functional group to a conductive carbon nanomaterial; a second step of forming a work function-reduced carbon nanomaterial dispersed solution by mixing and reacting the carbon nanomaterial, which is functionalized in the first step, with an isocyanate-based compound and a pyrimidine-based compound; a third step of forming a single-component coating solution by hybridizing the work function-reduced carbon nanomaterial dispersed solution obtained in the second step with a metal nanowire; and a fourth step of forming a film by applying the coating solution, which is formed in the third step, on a substrate.
    Type: Application
    Filed: March 15, 2016
    Publication date: August 4, 2016
    Inventors: Joong-tark Han, Geon-woong Lee, Kang-jun Baeg, Jong-seuk Woo, Seung-yol Jeong, Hee-jin Jeong
  • Publication number: 20160009934
    Abstract: The present invention relates to a highly conductive material formed by hybridization of a metal nanomaterial and a carbon nanomaterial having a higher-order structure due to multiple hydrogen bonding, and to a manufacturing method therefor. The technical essence of the present invention is a highly conductive material formed by hybridization of a metal nanomaterial and a carbon nanomaterial having a higher-order structure due to multiple hydrogen bonding the invention involving: forming a carbon nanomaterial having a higher-order structure due to multiple hydrogen bonding between conductive carbon nanomaterials by introducing a functional group capable of multiple hydrogen bonding to the carbon nanomaterials; forming a composite material by mixing the carbon nanomaterial having a higher-order structure and a metal nanomaterial.
    Type: Application
    Filed: September 25, 2015
    Publication date: January 14, 2016
    Inventors: Joong-tark Han, Geon-woong Lee, Kang-jun Baeg, Bo-hwa Jeong, Seung-yol Jeong, Hee-jin Jeong