Patents by Inventor Geordi Pang

Geordi Pang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070164225
    Abstract: The present invention provides a practical design of a megavoltage x-ray detector with both high quantum efficiency (QE) and high resolution. The x-ray detector includes an optical-fiber taper (OFT) made from a large number of optical fibers, each of which is aligned with the incident x-rays from an x-ray source hitting a top surface of the optical fiber taper. The optical-fiber taper is a matrix of optical fibers with the core material made of, e.g., silica and coated with a cladding glass or polymer such that light created within the core of each optical fiber will be guided to the bottom ends of the fiber with the ends of the fibers at the bottom being optically coupled to and optical image read-out device. Each optical fiber in the optical fiber taper is fully aligned with the incident x-ray source so that x-rays entering the top of the fiber travel directly towards the bottom of the same fiber.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 19, 2007
    Inventors: Geordi Pang, John Rowlands
  • Publication number: 20070025509
    Abstract: A 4-dimensional digital tomosynthesis system includes an x-ray source, an x-ray detector and a processor. The x-ray source is suitable for emitting x-ray beams to an object with a periodic motion. The periodic motion is divided into (n+1) time intervals, n being a positive integer. Each of the (n+1) time intervals is associated with a time instance ti, i=0, 1, 2, . . . , n. The x-ray detector is coupled to the x-ray source for acquiring projection radiographs of the object at each time instance ti for each scan angle based on the x-ray beams. The processor is communicatively coupled to the x-ray source and the x-ray detector for controlling the x-ray source and processing data received from the x-ray detector such that all projection radiographs acquired from all scan angles for each time instance ti are reconstructed and (n+1) sets of cross sections of the object are obtained. The cross section is either a coronal cross section or a sagittal cross section.
    Type: Application
    Filed: July 13, 2005
    Publication date: February 1, 2007
    Inventors: Geordi Pang, Ali Bani-Hashemi, John Rowlands
  • Publication number: 20060131512
    Abstract: The present invention provides a practical design of a megavoltage x-ray detector with both high quantum efficiency (QE) and high resolution. The x-ray detector disclosed herein has a QE that can be an order of magnitude higher than that of current flat panel systems and yet has a spatial resolution equivalent to that of current flat panel systems used for portal imaging. The x-ray detector includes a large number of micro-structured electrically conducting plates, packed together with thin spacers placed between neighboring plates with the micro-structured plates oriented to be parallel to the incident x-rays in operation. Each plate includes an electrically conductive substrate with a first planar surface, elongate electrically conductive strip electrodes separated from each other with strip spacers placed in between and sitting on an insulating layer interposed between the first planar surface of the electrically conductive substrate and the strip electrodes.
    Type: Application
    Filed: January 27, 2006
    Publication date: June 22, 2006
    Inventors: Geordi Pang, John Rowlands