Patents by Inventor Georg Gallmetzer

Georg Gallmetzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110300027
    Abstract: A product gas is generated from carbonaceous raw materials by allothermic gasification in a reactor. The reactor includes a pressure-charged reformer reactor for gasification of the carbonaceous raw materials, a feed line for feeding carbonaceous raw materials and ancillary materials for gasification into the reformer reactor, a combustion chamber thermally coupled to the reformer reactor for generating the heat required for the allothermic gasification, and a pneumatic conveyor device for removing particulate gasification residue and raw gas from the reformer reactor and for feeding the particulate gasification residue into the combustion chamber. A gas filter separates out the particulate gasification residue from the raw gas. The gas filter has a discharge line for product gas and discharge line for solid particles. A pressure lock has a high-pressure side and a low-pressure side. The gas filter and the pressure lock are separate components.
    Type: Application
    Filed: August 4, 2011
    Publication date: December 8, 2011
    Inventors: Michael Hofmeister, Stefan Aniol, Georg Gallmetzer
  • Publication number: 20110259556
    Abstract: A device is provided for generating combustible product gas from carbonaceous feedstocks through allothermal steam gasification in a pressurized gasification vessel. The pressurized allothermal steam gasification of carbonaceous fuels requires that heat be supplied to the gasification chamber at a temperature level of approximately 800-900° C. In a heat pipe reformer, as is known from EP 1 187 892 B1, combustible gas is generated from the carbonaceous feedstocks to be gasified through allothermal steam gasification in a pressurized fluidized bed gasification chamber. The heat needed for this is fed to the gasifier or reformer from a fluidized bed combustion system through a heat pipe arrangement. Due to the straight and tubular construction of heat pipes, the combustion chamber and reformer/gasification chamber are disposed one above the other in the known heat pipe reformer from EP 1 187 892 B1. The pressure vessel base is under particular stresses due to the high temperatures in the combustion chamber.
    Type: Application
    Filed: November 18, 2009
    Publication date: October 27, 2011
    Inventors: Georg Gallmetzer, Felix Nelles, Martin Kröner
  • Publication number: 20110243800
    Abstract: The invention relates to a fluidized-bed reactor having a higher power density and to an exchangeable insert for said fluidized-bed reactor, which insert makes the higher power density possible. The supply and pre-heating of the fluidizing agent, especially air, to the fluidized bed is combined with the cooling of the reactor vessel wall owing to the preferably exchangeable insert in the fluidized-bed reactor. The “cold” fluidizing agent is guided in at least one flow channel in the metal jacket surrounding the fluidized bed and is preheated and said channel and is then injected into the fluidized bed in an appropriate location. The reactor vessel wall is cooled by pre-heating the fluidizing agent. The desired and required values for cooling the reactor vessel and the desired pre-heating of the fluidizing agent can be adjusted by suitably selecting the parameters ‘length’ and ‘volume’ of the flow channels in the insert and the flow rate of the fluidizing agent in the flow channels.
    Type: Application
    Filed: October 7, 2009
    Publication date: October 6, 2011
    Inventors: Georg Gallmetzer, Matthias Hofmeister, Michael Hofmeister, Martin Kröner