Patents by Inventor Georg Schitter

Georg Schitter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946949
    Abstract: A method for demodulation including the following steps: exciting a vibrationally mounted, at least sectionally bar-shaped oscillating element for oscillating in the range of a resonance frequency of the oscillating element, wherein a temporally varying, in particular periodic, excitation signal is used for excitation, and wherein at least the temporal variation of the excitation signal is known or determined; detecting a modulated oscillation of the oscillating element by means of at least one sensor, wherein the sensor supplies a sensor measurement variable that varies versus time as a function of an amplitude and a phase of the modulated oscillation of the oscillating element. According to the present teaching, it is provided that the method includes the following step: generate a first comparison signal by amplitude modulating a known temporally varying, in particular periodic, demodulation signal by means of the temporally varying sensor measurement variable.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: April 2, 2024
    Assignee: TECHNISCHE UNIVERSITÄT WIEN
    Inventors: Dominik Kohl, Mathias Poik, Georg Schitter
  • Patent number: 11879996
    Abstract: A light detection and ranging (LIDAR) sensor includes a first reflective surface configured to oscillate about a first rotation axis to deflect a light beam into an environment; and a second reflective surface configured to oscillate about a second rotation axis to guide light received from the environment onto a photodetector of the LIDAR sensor. The first rotation axis and the second rotation axis extend parallel to one another. The LIDAR sensor also includes a control circuit configured to drive the first reflective surface to oscillate with a first maximum deflection angle about the first rotation axis, and to drive the second reflective surface to oscillate with a second maximum deflection angle about the second rotation axis, the first maximum deflection angle being greater than the second maximum deflection angle, and an area of the first reflective surface is less than an area of the second reflective surface.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Thomas Thurner, David Brunner, Marcus Edward Hennecke, Georg Schitter, Han Woong Yoo
  • Patent number: 11835710
    Abstract: A scanning system includes a microelectromechanical system (MEMS) scanning structure configured with a desired rotational mode of movement based on a driving signal; a plurality of comb-drives configured to drive the MEMS scanning structure according to the desired rotational mode of movement based on the driving signal, each comb-drive including a rotor comb electrode and a stator comb electrode that form a capacitive element that has a capacitance that depends on the deflection angle of the MEMS scanning structure; a driver configured to generate the at least one driving signal; a sensing circuit selectively coupled to at least a subset of the plurality of comb-drives for receiving sensing signals therefrom, wherein each sensing signal is representative of the capacitance of a corresponding comb-drive; and a processing circuit configured to determine a scanning direction of the MEMS scanning structure in the desired rotational mode of movement based on the sensing signals.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: December 5, 2023
    Assignee: Infineon Technologies AG
    Inventors: David Brunner, Stephan Gerhard Albert, Franz Michael Darrer, Georg Schitter, Richard Schroedter, Han Woong Yoo
  • Patent number: 11782263
    Abstract: An oscillator system includes an electrostatic oscillator structure configured to oscillate about an axis based on a deflection that varies over time; an actuator configured to drive the electrostatic oscillator structure about the axis, the actuator including a first capacitive element having a first capacitance dependent on the deflection and a second capacitive element having a second capacitance dependent on the deflection; a sensing circuit configured to receive a first displacement current from the first capacitive element and a second displacement current from the second capacitive element, to integrate the first displacement current to generate a first capacitive charge value, and to integrate the second displacement current to generate a second capacitive charge value; and a measurement circuit configured to receive the first and the second capacitive charge values and to measure the deflection of the electrostatic oscillator structure based on the first and the second capacitive charge values.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: October 10, 2023
    Assignee: Infineon Technologies AG
    Inventors: Richard Schroedter, Han Woong Yoo, David Brunner, Georg Schitter, Franz Michael Darrer, Marcus Edward Hennecke
  • Patent number: 11709231
    Abstract: A Light Detection and Ranging (LIDAR) system integrated in a vehicle includes a LIDAR transmitter configured to transmit laser beams into a field of view, the field of view having a center of projection, and the LIDAR transmitter including a laser to generate the laser beams transmitted into the field of view. The LIDAR system further includes a LIDAR receiver including at least one photodetector configured to receive a reflected light beam and generate electrical signals based on the reflected light beam. The LIDAR system further includes a controller configured to receive feedback information and modify a center of projection of the field of view in a vertical direction based on the feedback information.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: July 25, 2023
    Assignee: Infineon Technologies AG
    Inventors: Han Wong Yoo, Marcus Edward Hennecke, Georg Schitter, Thomas Thurner
  • Publication number: 20230221228
    Abstract: The invention relates to a method for preparing a tensile test on an elongate, more particularly fibrous, specimen, for example on a collagen fibril, comprising the steps of: -providing the elongate specimen; - attaching a handling particle to the elongate specimen; - providing a force sensor, on which a retainer for the handling particle on the elongate specimen is disposed; - connecting a handling apparatus to the handling particle on the elongate specimen; and - connecting the handling particle on the elongate specimen to the retainer on the force sensor by means of the handling apparatus. The invention also relates to a method and a device for performing a tensile test on an elongate specimen.
    Type: Application
    Filed: June 8, 2021
    Publication date: July 13, 2023
    Inventors: Mathis NALBACH, Philipp THURNER, Georg SCHITTER
  • Patent number: 11668924
    Abstract: An oscillator control system includes an non-linear oscillator structure configured to oscillate about an axis; a driver circuit configured to generate a driving signal to drive the oscillator structure; a detection circuit configured to measure an angle amplitude and a phase error of the oscillator structure; an amplitude controller configured to generate a reference oscillator period based on the measured angle amplitude; a period and phase controller configured to receive the reference oscillator period and the measured phase error from the detection circuit, generate at least one control parameter of the driving signal based on the reference oscillator period and the measured phase error, and determine a driving period of the driving signal based on the reference oscillator period and the measured phase error. The driver circuit is configured to generate the driving signal based on the at least one control parameter and the driving period.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: June 6, 2023
    Assignee: Infineon Technologies AG
    Inventors: David Brunner, Franz Michael Darrer, Georg Schitter
  • Patent number: 11614614
    Abstract: A disclosed reluctance actuator includes a magnetizable stator, at least one coil, and a yoke. The coil is configured to generate a magnetic field in the stator and the yoke is configured to partially close the magnetic flux of the stator. The yoke is further configured as a movable element that performs lifting/tilting movements. An actuator system including a non-magnetic housing and a reluctance actuator is also disclosed. In the actuator system, the reluctance actuator may be at least partially located in the non-magnetic housing. A method of performing lifting/tilting movements of the yoke of a reluctance actuator is also disclosed. The method includes controlling a current in the at least one coil of the reluctance actuator to thereby generate a magnetic field in the stator. The magnetic field generates a lifting/tilting movement of the yoke due to interaction between the magnetic field and the yoke.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: March 28, 2023
    Assignee: MICRO-EPSILON MESSTECHNIK GMBH & CO. KG
    Inventors: Georg Schitter, Ernst Csencsics, Johannes Schlarp, Tobias Schopf
  • Patent number: 11592534
    Abstract: A system includes a power driver, configured to generate an electric excitation; an oscillating system, configured to perform an oscillation induced by the electric excitation; a feedback detector, configured to detect a feedback measurement signal with to the oscillation; and a controller configured to operate: in a closed loop mode, to control the power driver to generate the electric excitation as a discontinuous electric excitation according to timing information obtained from the detected feedback measurement signal, to synchronize the discontinuous electric excitation with the detected feedback measurement signal; in a learning mode preceding the closed loop mode, to control the power driver to generate the electric excitation as a continuous electric excitation, to obtain timing information from the feedback measurement signal to be used, at least once, in the subsequent closed loop mode, to synchronize the discontinuous electric excitation with the detected feedback measurement signal.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: David Brunner, Georg Schitter, Han Woong Yoo
  • Patent number: 11531093
    Abstract: There are disclosed techniques for laser scanning control. A system includes control equipment to perform a coordinated scanning control by controlling: a mirror driver, to drive a mirror along desired mirror positions through a motion mirror control signal; and a laser driver, to generate laser light pulses to be impinged onto the mirror at the desired mirror positions through a pulse trigger control signal. The control equipment includes a motion estimator to provide estimated motion information based on feedback motion measurement(s), to generate the pulse trigger control signal by adapting a desired scheduling, for triggering the laser light pulses, to the estimated motion information.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: December 20, 2022
    Assignee: Infineon Technologies AG
    Inventors: Franz Michael Darrer, David Brunner, Georg Schitter, Han Woong Yoo
  • Publication number: 20220334377
    Abstract: An oscillator system includes an electrostatic oscillator structure configured to oscillate about an axis based on a deflection that varies over time; an actuator configured to drive the electrostatic oscillator structure about the axis, the actuator including a first capacitive element having a first capacitance dependent on the deflection and a second capacitive element having a second capacitance dependent on the deflection; a sensing circuit configured to receive a first displacement current from the first capacitive element and a second displacement current from the second capacitive element, to integrate the first displacement current to generate a first capacitive charge value, and to integrate the second displacement current to generate a second capacitive charge value; and a measurement circuit configured to receive the first and the second capacitive charge values and to measure the deflection of the electrostatic oscillator structure based on the first and the second capacitive charge values.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 20, 2022
    Applicant: Infineon Technologies AG
    Inventors: Richard SCHROEDTER, Han Woong YOO, David BRUNNER, Georg SCHITTER, Franz Michael DARRER, Marcus Edward HENNECKE
  • Patent number: 11467394
    Abstract: An oscillator system includes an electrostatic oscillator structure configured to oscillate about an axis based on a deflection that varies over time; an actuator configured to drive the electrostatic oscillator structure about the axis, the actuator including a first capacitive element having a first capacitance dependent on the deflection and a second capacitive element having a second capacitance dependent on the deflection; a sensing circuit configured to receive a first displacement current from the first capacitive element and a second displacement current from the second capacitive element, to integrate the first displacement current to generate a first capacitive charge value, and to integrate the second displacement current to generate a second capacitive charge value; and a measurement circuit configured to receive the first and the second capacitive charge values and to measure the deflection of the electrostatic oscillator structure based on the first and the second capacitive charge values.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: October 11, 2022
    Assignee: Infineon Technologies AG
    Inventors: Richard Schroedter, Han Woong Yoo, David Brunner, Georg Schitter, Franz Michael Darrer, Marcus Edward Hennecke
  • Publication number: 20220317439
    Abstract: A method of Lissajous scanning includes driving a first oscillator structure about a first rotation axis at a first resonance frequency according to a first driving signal, and driving a second oscillator structure about a second rotation axis at a second resonance frequency according to second driving signal different from the first resonance frequency. The first driving signal has a first low level, a first high level, and a first duty cycle, the combination of which produces the first resonance frequency, and the second driving signal has a second low level, a second high level, and a second duty cycle, the combination of which produces the second resonance frequency. At least one of the second low level, the second high level, and the second duty cycle is different from the first low level, the first high level, and the first duty cycle, respectively.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 6, 2022
    Applicant: Infineon Technologies AG
    Inventors: Han Woong YOO, Stephan Gerhard ALBERT, David BRUNNER, Norbert DRUML, Selma KARIC, Leonhard NIEDERMUELLER, Georg SCHITTER, Richard SCHROEDTER
  • Publication number: 20220187590
    Abstract: A scanning system includes a microelectromechanical system (MEMS) scanning structure configured with a desired rotational mode of movement based on a driving signal; a plurality of comb-drives configured to drive the MEMS scanning structure according to the desired rotational mode of movement based on the driving signal, each comb-drive including a rotor comb electrode and a stator comb electrode that form a capacitive element that has a capacitance that depends on the deflection angle of the MEMS scanning structure; a driver configured to generate the at least one driving signal; a sensing circuit selectively coupled to at least a subset of the plurality of comb-drives for receiving sensing signals therefrom, wherein each sensing signal is representative of the capacitance of a corresponding comb-drive; and a processing circuit configured to determine a scanning direction of the MEMS scanning structure in the desired rotational mode of movement based on the sensing signals.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 16, 2022
    Applicant: Infineon Technologies AG
    Inventors: David BRUNNER, Stephan Gerhard ALBERT, Franz Michael DARRER, Georg SCHITTER, Richard SCHROEDTER, Han Woong YOO
  • Patent number: 11356059
    Abstract: An oscillator system includes a first oscillator structure configured to oscillate about a first rotation axis at a first oscillation frequency; a second oscillator structure configured to oscillate about a second rotation axis at a second oscillation frequency; a driver circuit configured to generate a first driving signal to drive an oscillation of the first oscillator structure with a first oscillation phase and the first oscillation frequency and generate a second driving signal to drive an oscillation of the second oscillator structure with a second oscillation phase and the second oscillation frequency. The first oscillation frequency and the second oscillation frequency have a variable frequency ratio with respect to each other that varies over time. The driver circuit is configured to modulate at least one of the first oscillation phase or the second oscillation phase to modulate the variable frequency ratio.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 7, 2022
    Inventors: David Brunner, Georg Schitter, Richard Schroedter, Han Woong Yoo
  • Publication number: 20220120783
    Abstract: A method for demodulation including the following steps: exciting a vibrationally mounted, at least sectionally bar-shaped oscillating element for oscillating in the range of a resonance frequency of the oscillating element, wherein a temporally varying, in particular periodic, excitation signal is used for excitation, and wherein at least the temporal variation of the excitation signal is known or determined; detecting a modulated oscillation of the oscillating element by means of at least one sensor, wherein the sensor supplies a sensor measurement variable that varies versus time as a function of an amplitude and a phase of the modulated oscillation of the oscillating element. According to the present teaching, it is provided that the method includes the following step: generate a first comparison signal by amplitude modulating a known temporally varying, in particular periodic, demodulation signal by means of the temporally varying sensor measurement variable.
    Type: Application
    Filed: November 12, 2019
    Publication date: April 21, 2022
    Inventors: Dominik Kohl, Mathias Poik, Georg Schitter
  • Publication number: 20210344302
    Abstract: An oscillator system includes a first oscillator structure configured to oscillate about a first rotation axis at a first oscillation frequency; a second oscillator structure configured to oscillate about a second rotation axis at a second oscillation frequency; a driver circuit configured to generate a first driving signal to drive an oscillation of the first oscillator structure with a first oscillation phase and the first oscillation frequency and generate a second driving signal to drive an oscillation of the second oscillator structure with a second oscillation phase and the second oscillation frequency. The first oscillation frequency and the second oscillation frequency have a variable frequency ratio with respect to each other that varies over time. The driver circuit is configured to modulate at least one of the first oscillation phase or the second oscillation phase to modulate the variable frequency ratio.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 4, 2021
    Applicant: Infineon Technologies AG
    Inventors: David BRUNNER, Georg SCHITTER, Richard SCHROEDTER, Han Woong YOO
  • Publication number: 20210271072
    Abstract: An oscillator system includes an electrostatic oscillator structure configured to oscillate about an axis based on a deflection that varies over time; an actuator configured to drive the electrostatic oscillator structure about the axis, the actuator including a first capacitive element having a first capacitance dependent on the deflection and a second capacitive element having a second capacitance dependent on the deflection; a sensing circuit configured to receive a first displacement current from the first capacitive element and a second displacement current from the second capacitive element, to integrate the first displacement current to generate a first capacitive charge value, and to integrate the second displacement current to generate a second capacitive charge value; and a measurement circuit configured to receive the first and the second capacitive charge values and to measure the deflection of the electrostatic oscillator structure based on the first and the second capacitive charge values.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Applicant: Infineon Technologies AG
    Inventors: Richard SCHROEDTER, Han Woong YOO, David BRUNNER, Georg SCHITTER, Franz Michael DARRER, Marcus Edward HENNECKE
  • Publication number: 20210223536
    Abstract: An oscillator control system includes an non-linear oscillator structure configured to oscillate about an axis; a driver circuit configured to generate a driving signal to drive the oscillator structure; a detection circuit configured to measure an angle amplitude and a phase error of the oscillator structure; an amplitude controller configured to generate a reference oscillator period based on the measured angle amplitude; a period and phase controller configured to receive the reference oscillator period and the measured phase error from the detection circuit, generate at least one control parameter of the driving signal based on the reference oscillator period and the measured phase error, and determine a driving period of the driving signal based on the reference oscillator period and the measured phase error. The driver circuit is configured to generate the driving signal based on the at least one control parameter and the driving period.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Applicant: Infineon Technologies AG
    Inventors: David BRUNNER, Franz Michael DARRER, Georg SCHITTER
  • Publication number: 20210011134
    Abstract: A system includes a power driver, configured to generate an electric excitation; an oscillating system, configured to perform an oscillation induced by the electric excitation; a feedback detector, configured to detect a feedback measurement signal with to the oscillation; and a controller configured to operate: in a closed loop mode, to control the power driver to generate the electric excitation as a discontinuous electric excitation according to timing information obtained from the detected feedback measurement signal, to synchronize the discontinuous electric excitation with the detected feedback measurement signal; in a learning mode preceding the closed loop mode, to control the power driver to generate the electric excitation as a continuous electric excitation, to obtain timing information from the feedback measurement signal to be used, at least once, in the subsequent closed loop mode, to synchronize the discontinuous electric excitation with the detected feedback measurement signal.
    Type: Application
    Filed: June 23, 2020
    Publication date: January 14, 2021
    Applicant: Infineon Technologies AG
    Inventors: David BRUNNER, Georg SCHITTER, Han Woong YOO