Patents by Inventor George A. Kassanis

George A. Kassanis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139453
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George Kassanis
  • Patent number: 11896766
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: February 13, 2024
    Assignee: BREATHE TECHNOLOGIES, INC.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20220008673
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: July 27, 2021
    Publication date: January 13, 2022
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 11103667
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: August 31, 2021
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20200179635
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 11, 2020
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 10232136
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 19, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 10046133
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: August 14, 2018
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 9616194
    Abstract: In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. Additionally, the valve can be implemented with a diaphragm or with a flapper.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 11, 2017
    Assignee: Breathe Technologies, Inc.
    Inventors: Todd W. Allum, Joseph Cipollone, George A. Kassanis
  • Patent number: 9358358
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: June 7, 2016
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Publication number: 20160095997
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 9227034
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: January 5, 2016
    Assignee: Beathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 8939152
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 27, 2015
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Publication number: 20140182583
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Application
    Filed: October 29, 2013
    Publication date: July 3, 2014
    Applicant: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Publication number: 20130312752
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: April 2, 2010
    Publication date: November 28, 2013
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20130255684
    Abstract: In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. Additionally, the valve can be implemented with a diaphragm or with a flapper.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Inventors: Todd W. Allum, Joseph Cipollone, George A. Kassanis
  • Publication number: 20130255683
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 3, 2013
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20120138050
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Application
    Filed: September 30, 2011
    Publication date: June 7, 2012
    Applicant: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla