Patents by Inventor George A. Zimmerman

George A. Zimmerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9883457
    Abstract: A first transceiver operable to establish a connection with a second transceiver over a channel. A receiver of the first transceiver maintains communication parameters for the connection with the second transceiver, and processes signals received over the channel according to the communication parameters. The receiver monitors for idle frames from the second transceiver, and begins running of a first idle period in response to detecting a predetermined number of consecutive idle frames. The receiver, during the first idle period, suspends adaptation of the communication parameters. At an end of the first idle period, the receiver receives a first frame from the second transceiver, selectively adapts the communication parameters based on the first frame, and selectively begins running of a second idle period. A transmitter of the first transceiver suspends transmitting frames to the second transceiver during the first idle period and the second idle period.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: January 30, 2018
    Assignee: Marvell International Ltd.
    Inventor: George A. Zimmerman
  • Publication number: 20150195784
    Abstract: A first transceiver operable to establish a connection with a second transceiver over a channel. A receiver of the first transceiver maintains communication parameters for the connection with the second transceiver, and processes signals received over the channel according to the communication parameters. The receiver monitors for idle frames from the second transceiver, and begins running of a first idle period in response to detecting a predetermined number of consecutive idle frames. The receiver, during the first idle period, suspends adaptation of the communication parameters. At an end of the first idle period, the receiver receives a first frame from the second transceiver, selectively adapts the communication parameters based on the first frame, and selectively begins running of a second idle period. A transmitter of the first transceiver suspends transmitting frames to the second transceiver during the first idle period and the second idle period.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 9, 2015
    Inventor: George A. ZIMMERMAN
  • Patent number: 8984304
    Abstract: To reduce power consumption and heat generation, an active idle system is proposed that monitors for an idle period and then, after a predetermined time, initiates a silent period. During the silent period data and idle frames are not transmitted. During the silent period, one or more transceiver components may be turned off or forced into some other power saving mode. The predetermined time may be any amount of time and is selected to balance network usage and power savings. Periodically during the silent period, such as at predetermined times, one or more sync or idle frames are transmitted. Received sync or idle frames are processed to maintain receiver settings, synchronization or equalizer adaptation. Restoring active data communication may occur by monitoring the channel during silent periods for a request or only during the predetermined times when sync or idle frames are sent.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 17, 2015
    Assignee: Marvell International Ltd.
    Inventor: George A. Zimmerman
  • Patent number: 8912934
    Abstract: A system includes converters, first modules, second modules, and a multiplexer. The converters receive an analog signal and a respective one of multiple clock signals. Each of the converters samples the analog signal based on a respective clock signal to generate a respective digital signal. Each of the clock signals is out-of-phase with other ones of the clock signals. The first modules receive the digital signals generated by the converters, remove bias offsets from the digital signals to generate first output signals, and output each of the first output signals on a multiple channels. The second modules receive the first output signals, and based on the first output signals, remove or equalize gain mismatch between the channels to generate second output signals. The multiplexer receives the second output signals, and generates an output based on the second output signals. The output is a digital representation of the analog signal.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 16, 2014
    Assignee: Marvell International Ltd.
    Inventors: George A. Zimmerman, William W. Jones
  • Patent number: 8743674
    Abstract: A cancellation system is disclosed for processing incoming and outgoing signals in a transform domain to create a cancellation signal for reducing or removing unwanted interference. Data is ordered based on Good-Thomas indexing into a two dimensional array in a buffer. The two dimensional array may have lr rows and lw columns. From the buffer, the columns of data undergo a Winograd small transform. The rows of data undergo a Cooley-Tukey operation to complete the transform operation into the frequency domain. Multipliers scale the transformed data to generate a cancellation signal in the frequency domain. Inverse (Cooley-Tukey) and Winograd transforms perform inverse processing on the cancellation signal to return the cancellation signal or data to the time domain. Re-ordering the data and combination of the cancellation signal or data with incoming or outgoing signals achieve interference cancellation.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: June 3, 2014
    Assignee: Marvell International Ltd.
    Inventors: Gavin D. Parnaby, George A. Zimmerman, Chris Pagnanelli, William W. Jones
  • Patent number: 8363535
    Abstract: A cancellation system is disclosed for processing incoming and outgoing signals in a transform domain to create a cancellation signal for reducing or removing unwanted interference. Data is ordered based on Good-Thomas indexing into a two dimensional array in a buffer. The two dimensional array may have lr rows and lw columns. From the buffer, the columns of data undergo a Winograd small transform. The rows of data undergo a Cooley-Tukey operation to complete the transform operation into the frequency domain. Multipliers scale the transformed data to generate a cancellation signal in the frequency domain. Inverse (Cooley-Tukey) and Winograd transforms perform inverse processing on the cancellation signal to return the cancellation signal or data to the time domain. Re-ordering the data and combination of the cancellation signal or data with incoming or outgoing signals achieve interference cancellation.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: January 29, 2013
    Assignee: Marvell International Ltd.
    Inventors: Gavin D. Parnaby, George A. Zimmerman, Chris Pagnanelli, William W. Jones
  • Patent number: 8294606
    Abstract: A method and apparatus for compensating for gain offset, bias offset, and skew in a parallel processing environment is disclosed. The method and apparatus may be configured to compensate for mismatches between the sub-channel signals in a parallel ADC. This allows for accurate combination of the signals on the sub-channels. The method and apparatus may be utilized in a high speed data communication system having two or more channels, each of which are interleaved into two or more sub-channels. In one embodiment a DC loop processes signals on two or more sub-channels to account for and remove unwanted bias offset. In one embodiment a sub-channel gain mismatch compensation system (SCGMC) processes signals on two or more sub-channels to account for and remove unwanted gain offset. In one embodiment a skew compensation system, such as a parallel interpolator, processes signals on two or more sub-channels to remove unwanted skew across sub-channels.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 23, 2012
    Assignee: Marvell International Ltd.
    Inventors: George A. Zimmerman, William W. Jones
  • Publication number: 20110074611
    Abstract: A method and apparatus for compensating for gain offset, bias offset, and skew in a parallel processing environment is disclosed. The method and apparatus may be configured to compensate for mismatches between the sub-channel signals in a parallel ADC. This allows for accurate combination of the signals on the sub-channels. The method and apparatus may be utilized in a high speed data communication system having two or more channels, each of which are interleaved into two or more sub-channels. In one embodiment a DC loop processes signals on two or more sub-channels to account for and remove unwanted bias offset. In one embodiment a sub-channel gain mismatch compensation system (SCGMC) processes signals on two or more sub-channels to account for and remove unwanted gain offset. In one embodiment a skew compensation system, such as a parallel interpolator, processes signals on two or more sub-channels to remove unwanted skew across sub-channels.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 31, 2011
    Inventors: George A. Zimmerman, William W. Jones
  • Patent number: 7808407
    Abstract: A method and apparatus for compensating for gain offset, bias offset, and skew in a parallel processing environment is disclosed. The method and apparatus may be configured to compensate for mismatches between the sub-channel signals in a parallel ADC. This allows for accurate combination of the signals on the sub-channels. The method and apparatus may be utilized in a high speed data communication system having two or more channels, each of which are interleaved into two or more sub-channels. In one embodiment a DC loop processes signals on two or more sub-channels to account for and remove unwanted bias offset. In one embodiment a sub-channel gain mismatch compensation system (SCGMC) processes signals on two or more sub-channels to account for and remove unwanted gain offset. In one embodiment a skew compensation system, such as a parallel interpolator, processes signals on two or more sub-channels to remove unwanted skew across sub-channels.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: October 5, 2010
    Assignee: Solarflare Communications, Inc.
    Inventors: George A. Zimmerman, William W. Jones
  • Patent number: 7742386
    Abstract: A method and apparatus for reducing crosstalk in a multi-channel communication system is disclosed. In one embodiment, outgoing signals in a multi-channel environment are manipulated into a transform domain, such as the frequency domain. Thereafter, the signals may be combined and modified based on a weighting variable to create a cancellation signal. Combined processing greatly reduces system complexity and increases processing speed. After processing in the transform domain, the cancellation signal undergoes further processing to return the cancellation signal into the time domain. The cancellation signal may then be combined with received signals to cancel crosstalk or echo. A method and apparatus for crosstalk cancellation in the analog domain and digital domain is also disclosed.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: June 22, 2010
    Assignee: Solarflare Communications, Inc.
    Inventors: William W. Jones, George A. Zimmerman
  • Patent number: 7567666
    Abstract: A method and apparatus for noise cancellation in a multi-channel communication system is disclosed. In one embodiment this system is configured to cancel FEXT on a victim channel utilizing the signals received on the other channels. The processing benefits gained by a receiver's other filters, such as for example, the FFE and DFE filters, is utilized when generating a FEXT cancellation signal. As a result, the complexity of the apparatus that generates the FEXT cancellation signal may be made less complex since part of the processing burden is performed by other filter apparatus. In one configuration pre-code FEXT cancellation occurs in that a pre-code FEXT filter generates one or more pre-code FEXT cancellation signals corresponding to each of the other channels. The pre-code FEXT cancellation signals are combined, prior to transmission, with the signals associated with each of the other channels, to thereby pre-cancel FEXT prior to transmission.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: July 28, 2009
    Assignee: Solarflare Communications, Inc.
    Inventors: George A. Zimmerman, William W. Jones
  • Publication number: 20090125735
    Abstract: To reduce power consumption and heat generation, an active idle system is proposed that monitors for an idle period and then, after a predetermined time, initiates a silent period. During the silent period data and idle frames are not transmitted. During the silent period, one or more transceiver components may be turned off or forced into some other power saving mode. The predetermined time may be any amount of time and is selected to balance network usage and power savings. Periodically during the silent period, such as at predetermined times, one or more sync or idle frames are transmitted. Received sync or idle frames are processed to maintain receiver settings, synchronization or equalizer adaptation. Restoring active data communication may occur by monitoring the channel during silent periods for a request or only during the predetermined times when sync or idle frames are sent.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 14, 2009
    Inventor: George A. Zimmerman
  • Publication number: 20090116639
    Abstract: A method and apparatus for noise cancellation in a multi-channel communication system is disclosed. In one embodiment this system is configured to cancel FEXT on a victim channel utilizing the signals received on the other channels. The processing benefits gained by a receiver's other filters, such as for example, the FFE and DFE filters, is utilized when generating a FEXT cancellation signal. As a result, the complexity of the apparatus that generates the FEXT cancellation signal may be made less complex since part of the processing burden is performed by other filter apparatus. In one configuration pre-code FEXT cancellation occurs in that a pre-code FEXT filter generates one or more pre-code FEXT cancellation signals corresponding to each of the other channels. The pre-code FEXT cancellation signals are combined, prior to transmission, with the signals associated with each of the other channels, to thereby pre-cancel FEXT prior to transmission.
    Type: Application
    Filed: January 4, 2007
    Publication date: May 7, 2009
    Inventors: George A. Zimmerman, William W. Jones
  • Publication number: 20090021406
    Abstract: A method and apparatus for compensating for gain offset, bias offset, and skew in a parallel processing environment is disclosed. The method and apparatus may be configured to compensate for mismatches between the sub-channel signals in a parallel ADC. This allows for accurate combination of the signals on the sub-channels. The method and apparatus may be utilized in a high speed data communication system having two or more channels, each of which are interleaved into two or more sub-channels. In one embodiment a DC loop processes signals on two or more sub-channels to account for and remove unwanted bias offset. In one embodiment a sub-channel gain mismatch compensation system (SCGMC) processes signals on two or more sub-channels to account for and remove unwanted gain offset. In one embodiment a skew compensation system, such as a parallel interpolator, processes signals on two or more sub-channels to remove unwanted skew across sub-channels.
    Type: Application
    Filed: June 9, 2008
    Publication date: January 22, 2009
    Inventors: George A. Zimmerman, William W. Jones
  • Publication number: 20080239939
    Abstract: A cancellation system is disclosed for processing incoming and outgoing signals in a transform domain to create a cancellation signal for reducing or removing unwanted interference. Data is ordered based on Good-Thomas indexing into a two dimensional array in a buffer. The two dimensional array may have lr rows and lw columns. From the buffer, the columns of data undergo a Winograd small transform. The rows of data undergo a Cooley-Tukey operation to complete the transform operation into the frequency domain. Multipliers scale the transformed data to generate a cancellation signal in the frequency domain. Inverse (Cooley-Tukey) and Winograd transforms perform inverse processing on the cancellation signal to return the cancellation signal or data to the time domain. Re-ordering the data and combination of the cancellation signal or data with incoming or outgoing signals achieve interference cancellation.
    Type: Application
    Filed: February 29, 2008
    Publication date: October 2, 2008
    Inventors: Gavin D. Parnaby, George A. Zimmerman, Chris Pagnanelli, William W. Jones
  • Patent number: 7352687
    Abstract: A method and apparatus for reducing crosstalk in a multi-channel communication system is disclosed. In one embodiment, outgoing signals in a multi-channel environment are manipulated into a transform domain, such as the frequency domain. Thereafter, the signals may be combined and modified based on a weighting variable to create a cancellation signal. Combined processing greatly reduces system complexity and increases processing speed. After processing in the transform domain, the cancellation signal undergoes further processing to return the cancellation signal into the time domain. The cancellation signal may then be combined with received signals to cancel crosstalk or echo. A method and apparatus for crosstalk cancellation in the analog domain and digital domain are also disclosed.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: April 1, 2008
    Assignee: Solarflare Communications, Inc.
    Inventors: William W. Jones, George A. Zimmerman, Christopher Jude Pagnanelli
  • Patent number: 7257181
    Abstract: A method and apparatus is disclosed to overcome the effects of intersymbol interference during data transmission. Overcoming the effects of intersymbol interference makes possible higher data transmission rates for a given error rate. In one embodiment a receiver processing system a first, second and third filter, such that the second and third filter comprise feedback filters. Filter coefficients are calculated to reduce the undesirable effects of the channel, such as intersymbol interference. A training process occurs to establish the first filter as a mixed phase filter and the third filter as minimum phase filter. The second filter is configured based on the transfer function of the channel and one or more coefficients may be set to a predetermined value.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: August 14, 2007
    Assignee: Solarflare Communications, Inc.
    Inventors: William W. Jones, George A. Zimmerman
  • Patent number: 7164764
    Abstract: A method and apparatus for noise cancellation in a multi-channel communication system is disclosed. In one embodiment this system is configured to cancel FEXT on a victim channel utilizing the signals received on the other channels. The processing benefits gained by a receiver's other filters, such as for example, the FFE and DFE filters, is utilized when generating a FEXT cancellation signal. As a result, the complexity of the apparatus that generates the FEXT cancellation signal may be made less complex since part of the processing burden is performed by other filter apparatus. In one configuration pre-code FEXT cancellation occurs in that a pre-code FEXT filter generates one or more pre-code FEXT cancellation signals corresponding to each of the other channels. The pre-code FEXT cancellation signals are combined, prior to transmission, with the signals associated with each of the other channels, to thereby pre-cancel FEXT prior to transmission.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: January 16, 2007
    Assignee: Solarflare Communications, Inc.
    Inventors: George A. Zimmerman, William W. Jones
  • Patent number: 7002897
    Abstract: A method and apparatus for reducing crosstalk in a multi-channel communication system is disclosed. In one embodiment, outgoing signals in a multi-channel environment are manipulated into a transform domain, such as the frequency domain. Thereafter, the signals may be combined and modified based on a weighting variable to create a cancellation signal. Combined processing greatly reduces system complexity and increases processing speed. After processing in the transform domain, the cancellation signal undergoes further processing to return the cancellation signal into the time domain. The cancellation signal may then be combined with received signals to cancel crosstalk or echo. A method and apparatus for crosstalk cancellation in the analog domain and digital domain is also disclosed.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: February 21, 2006
    Assignee: SolarFlare Communications, Inc.
    Inventors: William W. Jones, George A. Zimmerman
  • Patent number: 6912208
    Abstract: A method and apparatus for noise cancellation in a multi-channel communication system is disclosed. In one embodiment this system is configured to cancel FEXT on a victim channel utilizing the signals received on the other channels. The processing benefits gained by a receiver's other filters, such as for example, the FFE and DFE filters, is utilized when generating a FEXT cancellation signal. As a result, the complexity of the apparatus that generates the FEXT cancellation signal may be made less complex since part of the processing burden is performed by other filter apparatus. In one configuration pre-code FEXT cancellation occurs in that a pre-code FEXT filter generates one or more pre-code FEXT cancellation signals corresponding to each of the other channels. The pre-code FEXT cancellation signals are combined, prior to transmission, with the signals associated with each of the other channels, to thereby pre-cancel FEXT prior to transmission.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: June 28, 2005
    Assignee: SolarFlare Communications, Inc.
    Inventors: George A. Zimmerman, William W. Jones