Patents by Inventor George Alan Vaughan

George Alan Vaughan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7829495
    Abstract: The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one ?-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two ?-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Joseph C. Floyd, Moses Olukayode Jejelowo, Donna Jean Crowther, George Alan Vaughan, Ching Tai Lue
  • Patent number: 7141632
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 28, 2006
    Assignee: Univation Technologies, LLC
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Patent number: 7084223
    Abstract: The invention encompasses late transition metal catalyst systems immobilized on solid supports and their use in heterogenous polymerization processes, particularly in gas phase polymerization of olefin monomers. Preferred embodiments include a late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure immobilized on a solid porous metal or metalloid oxide particle support, particularly those comprising silica. The gas phase polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under gas phase polymerization conditions.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: August 1, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire
  • Patent number: 7060765
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention relates to identifying the comonomer incorporation behavior of metallocene polymerization catalyst compounds. More particularly, the invention relates to identifying metallocene catalyst compounds which incorporate comonomer poorly. Preferably, such metallocene catalyst compounds contain at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand. The invention also relates to the use of these low comonomer incorporating metallocene catalyst compounds in catalyst systems to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: June 13, 2006
    Assignee: Univation Technologies, LLC
    Inventors: George Alan Vaughan, Laughlin G. McCullough
  • Patent number: 6828394
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: December 7, 2004
    Assignee: Univation Technologies, LLC
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Publication number: 20040225088
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Application
    Filed: April 2, 2004
    Publication date: November 11, 2004
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Patent number: 6812184
    Abstract: A late transition metal catalyst system for polymerization of olefin monomers is a Group 9, 10 or 11 metal complex stabilized by a bidentate ligand immobilized on a solid support where the late transition metal loading is less than 100 micromoles transition metal compound per gram of solid support. The bidentate ligand has the formula: wherein A is a bridging group containing a Group 13-15 element; each E is independently a Group 15 or 16 element bonded to M; each R is independently a C1-C30 containing radical or diradical group which is a hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, hydrocarbyl-substituted organometalloid, halocarbyl-substituted organometalloid, m and n are independently 1 or 2 depending on the valency of E; and p is the charge on the bidentate ligand.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire
  • Publication number: 20040210014
    Abstract: The invention encompasses late transition metal catalyst systems immobilized on solid supports and their use in heterogenous polymerization processes, particularly in gas phase polymerization of olefin monomers. Preferred embodiments include a late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure immobilized on a solid porous metal or metalloid oxide particle support, particularly those comprising silica. The gas phase polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under gas phase polymerization conditions.
    Type: Application
    Filed: May 4, 2004
    Publication date: October 21, 2004
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire
  • Patent number: 6800704
    Abstract: The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one &pgr;-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two &pgr;-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: October 5, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Joseph C. Floyd, Moses Olukayode Jejelowo, Donna Jean Crowther, George Alan Vaughan, Ching Tai Lue
  • Patent number: 6759499
    Abstract: The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one &pgr;-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two &pgr;-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: July 6, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Joseph C. Floyd, Moses Olukayode Jejelowo, Donna Jean Crowther, George Alan Vaughan, Ching Tai Lue
  • Publication number: 20040077785
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention relates to identifying the comonomer incorporation behavior of metallocene polymerization catalyst compounds. More particularly, the invention relates to identifying metallocene catalyst compounds which incorporate comonomer poorly. Preferably, such metallocene catalyst compounds contain at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand. The invention also relates to the use of these low comonomer incorporating metallocene catalyst compounds in catalyst systems to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Application
    Filed: July 19, 2002
    Publication date: April 22, 2004
    Inventors: George Alan Vaughan, Laughlin G. McCullough
  • Publication number: 20030088038
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Application
    Filed: July 19, 2002
    Publication date: May 8, 2003
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Patent number: 6492473
    Abstract: The invention encompasses a mixed transition metal olefin polymerization catalyst system suitable for the polymerization of olefin monomers comprising one late transition metal catalyst system and at least one different catalyst system selected from the group consisting of late transition metal catalyst systems, transition metal metallocene catalyst systems or Ziegler-Natta catalyst systems. Preferred embodiments include at least one late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure and at least one transition metal metallocene catalyst system comprising a Group 4 metal complex stabilized by at least one ancillary cyclopentadienyl ligand. The polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under polymerization conditions.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: December 10, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann Marie Canich, George Alan Vaughan, Phillip T. Matsunaga, David Edward Gindelberger, Timothy Daniel Shaffer, Kevin Richard Squire
  • Patent number: 6489413
    Abstract: The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one &pgr;-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two &pgr;-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Joseph C. Floyd, Moses Olukayode Jejelowo, Donna Jean Crowther, George Alan Vaughan, Ching Tai Lue
  • Patent number: 6476171
    Abstract: A polymer of ethylene and at least one alpha olefin having at least 5, carbon atoms obtainable by a continuous gas phase polymerization using supported catalyst of an activated molecularly discrete catalyst such as a metallocene in the substantial absence of an aluminum alkyl based scavenger which polymer has a Melt Index (MI) as herein defined of from 0.1 to 15; a Compositional Distribution Breadth Index (CDBI) as defined herein of at least 70%, a density of from 0.910 to 0.930 g/ml; a Haze value as herein defined of less than 20%; a Melt Index ratio (MIR) as herein defined of from 35 to 80; an averaged Modulus (M) as herein defined of from 20 000 to 60 000 psi (pounds per square inch) and a relation between M and the Dart Impact Strength in g/mil (DIS) complying with the formula: DIS≧0.8×[100+e(11.71-0.000268×M+2.183×10−9×M2)].
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: November 5, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ching-Tai Lue, Natalie A. Merrill, Michael E. Muhle, George Alan Vaughan
  • Publication number: 20020156208
    Abstract: The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one &pgr;-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two &pgr;-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 24, 2002
    Inventors: Joseph C. Floyd, Moses Olukayode Jejelowo, Donna Jean Crowther, George Alan Vaughan, Ching Tai Lue
  • Patent number: 6255426
    Abstract: A polymer of ethylene and at least one alpha olefin having at least 5, carbon atoms obtainable by a continuous gas phase polymerization using supported catalyst of an activated molecularly discrete catalyst such as a metallocene in the substantial absence of an aluminum alkyl based scavenger which polymer has a Melt Index (MI) as herein defined of from 0.1 to 15; a Compositional Distribution Breadth Index (CDBI) as defined herein of at least 70%, a density of from 0.910 to 0.930 g/ml; a Haze value as herein defined of less than 20%; a Melt Index ratio (MIR) as herein defined of from 35 to 80; an averaged Modulus (M) as herein defined of from 20 000 to 60 000 psi (pounds per square inch) and a relation between M and the Dart Impact Strength in g/mil (DIS) complying with the formula: DIS≧0.8×[100+e(11.71−0.000268×M+2.183×10−9×M2)].
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: July 3, 2001
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Ching-Tai Lue, Natalie A. Merrill, Michael E. Muhle, George Alan Vaughan
  • Patent number: 6194341
    Abstract: The invention encompasses a mixed transition metal olefin polymerization catalyst system suitable for the polymerization of olefin monomers comprising one late transition metal catalyst system and at least one different catalyst system selected from the group consisting of late transition metal catalyst systems, transition metal metallocene catalyst systems or Ziegler-Natta catalyst systems. Preferred embodiments include at least one late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure and at least one transition metal metallocene catalyst system comprising a Group 4 metal complex stabilized by at least one ancillary cyclopentadienyl ligand. The polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under polymerization conditions.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: February 27, 2001
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Jo Ann Marie Canich, George Alan Vaughan, Phillip T. Matsunaga, David Edward Gindelberger, Timothy Daniel Shaffer, Kevin Richard Squire
  • Patent number: 6180736
    Abstract: The disclosed invention relates to a polymerization process comprising contacting ethylene, and optionally, one or more olefinically unsaturated comonomers, with an active supported Group 3, 4, 5, or 6 metallocene catalyst system having an unsubstituted or substituted fused-ring cyclopentadienyl ligand, preferably indenyl or fluorenyl, and a substituted or unsubstituted cyclopentadienyl ligand under gas-phase or slurry polymerization conditions. The process is suitable for the production of high-density polyethylene homopolymers and copolymers. The benefits to industrial practice are both the ease of preparation and low-cost of the precursor metallocene compound and the commercially feasible polymerization activity levels in stable, low fouling level reactor conditions surprisingly associated with it. Additionally, the polymers made under the invention process conditions have narrow molecular weight distributions, low MI, and low values for MIR.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: January 30, 2001
    Assignee: Exxon Chemical Patents Inc
    Inventors: Michael E. Muhle, George Alan Vaughan
  • Patent number: 6127497
    Abstract: The invention encompasses late transition metal catalyst systems and their use in polymerization processes, particularly in solution, 2-phase suspension and super-critical phase polymerization of ethylene-containing polymers. Preferred embodiments include the use of a late transition metal catalyst system comprising a Group 8, 9, 10, or 11 metal complex stabilized by a bidentate ligand structure for polymerization under elevated ethylene pressure, or concentration, conditions.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: October 3, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Phillip T. Matsunaga, Jo Ann Marie Canich, George Alan Vaughan, David Edward Gindelberger, Rinaldo Soria Schiffino, Kevin Richard Squire, Rolf Bodo Temme