Patents by Inventor George Albert Goller

George Albert Goller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8506660
    Abstract: A method for assembling a nozzle is provided. The method includes providing an injection tube that includes an outlet that is configured to discharge fuel therefrom. A face plate is also provided that extends about the injection tube such that the face plate substantially circumscribes the outlet. A cooling chamber is defined within the injection tube and configured to channel cooling fluid adjacent to the face plate. At least one surface defining the cooling chamber is configured to disrupt a flow of the cooling fluid flowing through the cooling chamber.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: George Albert Goller, Paul Stephen Dimascio
  • Publication number: 20130126056
    Abstract: A cast nickel-iron-base alloy component having by weight about 12.0% to about 16.5% Cr, about 1.0% to about 2.0% Al, about 2.0% to about 3.0% Ti, about 2.0% to about 3.0% W, about 3.0 to about 5.0% Mo, up to about 0.1% Nb, up to about 0.2% Mn, up to about 0.1% Si, about 0.05% to about 0.10% C, about 0.003 to about 0.010% B, about 35% to about 37% Fe, and balance essentially Ni and inevitable impurities. The nickel-iron-base alloy component has a creep rupture life greater than about 1000 hours at about 25 ksi to about 30 ksi at about 1400° F. A method for forming the cast nickel-iron-base alloy component is also disclosed.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang FENG, George Albert GOLLER, Joseph C. RAZUM, Matthew LAYLOCK
  • Patent number: 8376726
    Abstract: An improved container and method for forming billets using hot isostatic pressing is provided. The method and container allows for adjusting the volume of the container so as to obtain a billet of the desired shape based on selected powder charge for the container. In addition, the corner of the container can be adjusted to allow for elimination of edge effects and further shape control in the resulting billet.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: George Albert Goller, Raymond Joseph Stonitsch, Jason Robert Parolini
  • Patent number: 8372251
    Abstract: According to various embodiments, a system includes a gasifier that includes a shell made of a first material exposed to a gasification region inside the gasifier and a patterned anode layer coupled to the shell inside the gasifier. The patterned anode layer is made of a second material, and the patterned anode layer is configured to protect the shell from corrosion by condensing hot gas in the gasification region.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: February 12, 2013
    Assignee: General Electric Company
    Inventors: George Albert Goller, Paul Stephen Dimascio, Rebecca Evelyn Hefner
  • Publication number: 20130017069
    Abstract: Disclosed is a turbine, a turbine seal structure, and a process of servicing a turbine. The turbine includes the seal structure. The seal structure is mechanically secured within the hot gas path of the turbine. The process of servicing includes positioning the seal structure within the hot gas path of the turbine and mechanically securing the seal structure within the turbine.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert GOLLER, Dennis William CAVANAUGH, Matthew LAYLOCK
  • Publication number: 20130017071
    Abstract: Disclosed is a foam structure, a process of fabricating the foam structure, and a turbine including the foam structure. The foam structure includes a cast metallic foam having pores and a gel positioned within at least a portion of the pores. The process of fabricating the foam structure includes providing the cast metallic and infusing the cast metal foam with the gel. The turbine includes a rotating portion and a turbine seal including the foam structure.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert GOLLER, Dennis William CAVANAUGH
  • Publication number: 20130017070
    Abstract: Provided is a turbine seal, a turbine, and a process of fabricating a turbine seal. The turbine seal includes a metallic foam positioned along a hot gas path of a turbine. The turbine includes a blade configured to rotate along a predetermined path in response to a hot gas and a metallic foam turbine seal positioned to be contacted by the hot gas. The process of fabricating the turbine seal includes providing a blade configured to rotate along a predetermined path in response to a hot gas and positioning a metallic foam turbine seal to be contacted by the hot gas.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert GOLLER, Dennis William CAVANAUGH, Matthew LAYLOCK
  • Patent number: 8313810
    Abstract: A method for forming an oxide-dispersion strengthened coating on a metal substrate is disclosed. The method generally includes comminuting MCrAlY alloy particles to form an oxygen-enriched powder, wherein at least about 25% by volume of the MCrAlY alloy particles within the oxygen-enriched powder have a particle size of less than about 5 ?m. Additionally, the method includes applying the oxygen-enriched powder to the metal substrate to form a coating and heating the oxygen-enriched powder to precipitate oxide dispersoids within the coating.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: November 20, 2012
    Assignee: General Electric Company
    Inventors: David Andrew Helmick, George Albert Goller, Raymond Joseph Stonitsch
  • Publication number: 20120282106
    Abstract: Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert Goller, Raymond Joseph Stonitsch, Richard DiDomizio
  • Patent number: 8303289
    Abstract: An improved method and container for forming billets using hot isostatic pressing is provided. The improved method and container have features that control the deformations of the container during the high temperatures and pressures experienced in such processing so as to provide a billet having a predetermined shape such as, for example, substantially parallel, convex, and/or concave sides. Conservations of the powder used for the billet and more efficient use of the container upon the resulting billet can be achieved.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: November 6, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Raymond Joseph Stonitsch, Jason Robert Parolini, Daniel Y. Wei
  • Publication number: 20120258253
    Abstract: A method for forming an oxide-dispersion strengthened coating on a metal substrate is disclosed. The method generally includes comminuting MCrAlY alloy particles to form an oxygen-enriched powder, wherein at least about 25% by volume of the MCrAlY alloy particles within the oxygen-enriched powder have a particle size of less than about 5 ?m. Additionally, the method includes applying the oxygen-enriched powder to the metal substrate to form a coating and heating the oxygen-enriched powder to precipitate oxide dispersoids within the coating.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Andrew Helmick, George Albert Goller, Raymond Joseph Stonitsch
  • Publication number: 20120247621
    Abstract: A casting process for producing metal alloy castings, facecoats and apparatuses suitable for carrying out the process, and castings produced by the process. The casting process entails the use of a mold having a cavity with a continuous aluminum-containing solid facecoat on its surface. A molten quantity of a metal alloy is introduced into the mold cavity so that the molten alloy contacts the solid facecoat. The mold is then allowed to cool to solidify the molten alloy and form a cast product. During the casting process, aluminum in the solid facecoat diffuses into the cast product to form an aluminum-containing surface region at the casting surface. Following removal of the cast product from the mold, an alumina-containing scale grows on the casting surface as a result of oxidation of the casting surface region.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 4, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert Goller, Dennis William Cavanaugh
  • Publication number: 20120243981
    Abstract: Various turbine component preforms are disclosed having near-net shape features. In one embodiment, a turbine casing preform is disclosed. The turbine casing preform includes an as-cast body comprising a partially cylindrical wall section of a turbine casing, the wall section having an inner surface and an outer surface. The turbine casing preform also includes a circumferentially-extending vane slot formed in the wall section on the inner surface. In another embodiment, a turbine nozzle diaphragm preform is disclosed. The turbine nozzle diaphragm preform includes an as-cast body comprising a partially-cylindrical wall section of a turbine nozzle diaphragm having an inner surface and an outer surface. The turbine nozzle diaphragm preform also includes an as-cast, circumferentially-extending seal member projecting from one of the outer surface or inner surface.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Junyoung Park, George Albert Goller, Brian Victor Moore, Jason Robert Parolini
  • Patent number: 8268134
    Abstract: According to various embodiments, a system includes a turbine engine component that includes a first material having a surface exposed to a fluid flow path and a sacrificial anode layer disposed on the surface. The sacrificial anode layer includes a second material that is electrochemically more active than the first material and the second material is configured to preferentially corrode to protect the first material from corrosion.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Paul Stephen Dimascio, Rebecca Evelyn Hefner
  • Patent number: 8227930
    Abstract: A system and method for adjusting a bending moment of a shaft in a wind turbine are disclosed. The system includes a pillow block accepting the shaft therethrough, a sensor mounted to the pillow block and measuring deformation of the pillow block, and a control system communicatively coupled to the sensor. The control system is configured to adjust a rotor blade in response to the deformation of the pillow block. The method includes measuring a deformation of a pillow block, and adjusting a rotor blade in response to the deformation of the pillow block. The pillow block accepts the shaft therethrough.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: July 24, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Dale Robert Mashtare
  • Publication number: 20120139242
    Abstract: A system and method for adjusting a bending moment of a shaft in a wind turbine are disclosed. The system includes a pillow block accepting the shaft therethrough, a sensor mounted to the pillow block and measuring deformation of the pillow block, and a control system communicatively coupled to the sensor. The control system is configured to adjust a rotor blade in response to the deformation of the pillow block. The method includes measuring a deformation of a pillow block, and adjusting a rotor blade in response to the deformation of the pillow block. The pillow block accepts the shaft therethrough.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 7, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert Goller, Dale Robert Mashtare
  • Patent number: 8163047
    Abstract: A method of cooling hot fluid flowing through a chamber is provided. The method includes channeling cooling fluid through at least one cooling tube that extends through a passage of the chamber, and circulating the hot fluid flowing within the passage around the at least one cooling tube using at least one fluid diverter.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 24, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Daniel Anthony Nowak
  • Publication number: 20120073197
    Abstract: A gasifier includes a combustion chamber and a pressure vessel surrounding the combustion chamber, wherein the pressure vessel includes an inner surface. A controller adjusts a pressure inside the pressure vessel so that a dew point temperature of corrosive compounds produced in the combustion chamber is less than a temperature of the inner surface of the pressure vessel. A method for operating a gasifier includes adjusting a pressure inside a pressure vessel surrounding the gasifier so that a dew point temperature of a corrosive compound is less than a temperature of an inner wall of the pressure vessel.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 29, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: George Albert Goller
  • Publication number: 20120073196
    Abstract: A gasifier that includes a combustion chamber and a pressure vessel surrounding the combustion chamber, wherein the pressure vessel includes an inner surface. A heater surrounds the pressure vessel and increases a temperature of the inner surface of the pressure vessel. A method for operating a gasifier includes increasing an inner wall temperature of a pressure vessel surrounding the gasifier.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 29, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: George Albert Goller
  • Publication number: 20120051919
    Abstract: A forging preform for a turbine rotor disk is disclosed. The preform includes a body of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of 10 or smaller. 5. A turbine rotor disk is also disclosed. The disk includes a substantially cylindrical disk of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of about 10 or smaller. A method of making a turbine rotor disk is also disclosed. The method includes providing a superalloy powder material and pressing the superalloy powder material to form a forging preform for a turbine rotor disk.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raymond Joseph Stonitsch, George Albert Goller, Joseph Jay Jackson, David Paul Mourer, Daniel Yeuching Wei