Patents by Inventor George Berkey

George Berkey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060088262
    Abstract: An optical fiber including: (i) a silica based, rare earth doped core having a first index of refraction n1; (ii) a silica based inner cladding surrounding the core and having a second index of refraction n2, such that n1>n2, said inner cladding having a plurality of air holes extending longitudinally through the length of said optical fiber; (iii) a silica based outer cladding surrounding said inner cladding and having a third index of refraction n3, such that n2>n3, wherein said optical fiber supports a single polarization mode within the operating wavelength range.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Inventors: George Berkey, Xin Chen, Joohyun Koh, Ming-Jun Li, Daniel Nolan, Donnell Walton, Ji Wang, Luis Zenteno
  • Publication number: 20060088261
    Abstract: An optical fiber, comprising: (i) a rare earth doped silica based elongated core with a first refractive index (n1) with an aspect ratio of 1:5 to 1; (ii) a silica based moat abutting and at least substantially surrounding the core, the moat having a refractive index n2, wherein n2<n1; (iii) a silica based inner cladding surrounding the moat, the inner cladding having a third refractive index (n3), wherein n1>n3; and n3>n2; (iv) a silica based outer cladding surrounding said inner cladding, the outer cladding having a fourth refractive index (n4), such that n4<n3; the optical fiber exhibits single polarization at the operating wavelength band.
    Type: Application
    Filed: February 14, 2005
    Publication date: April 27, 2006
    Inventors: George Berkey, Xin Chen, Joohyun Koh, Ming-Jun Li, Daniel Nolan, Donnell Walton, Ji Wang, Luis Zenteno
  • Publication number: 20060083471
    Abstract: An optical fiber, comprising: a central core having a maximum dimension (A) greater than a minimum dimension (B) and a substantially elliptical shape, the fiber having at least one air hole positioned each opposite side of the central core wherein the optical fiber exhibits (i) single polarization propagation within a single polarization band and (ii) polarization maintaining property, such that the fiber beat length normalized at 1550 nm is less than 10 mm; and the polarization maintaining band is situated within wavelengths which are (a) adjacent to and below the single polarization band; and (b) above the higher order mode cutoff wavelength.
    Type: Application
    Filed: November 28, 2005
    Publication date: April 20, 2006
    Inventors: George Berkey, Xin Chen, Ming-Jun Li, Daniel Nolan, William Wood, Joohyun Koh
  • Publication number: 20060045446
    Abstract: According to the present invention the optical fiber includes a core with a first refractive index (n1) and the innermost core region with the refractive index n0, a cladding surrounding the core, the cladding having a third refractive index (n3), wherein n1>n3 and n0<n1. According to some of the embodiments the optical fiber may also include a moat surrounding and abutting the core and situated between the core and the cladding, the moat having a second refractive index (n2), wherein n3>n2. It is preferable that at least one of the core, innermost core region and/or moat has a non-circular shape.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Inventors: George Berkey, Xin Chen, Ming-Jun Li, Daniel Nolan, Ji Wang, William Wood, Luis Zenteno
  • Publication number: 20060018612
    Abstract: Disclosed is an optical fiber (20) having a centermost laterally-elongated core (30) having a short dimension (a), a long dimension (b) and a first refractive index (n1), a moat (40) surrounding the central laterally-elongated core, the moat (40) having a second refractive index (n2), an outer dimension (c) and an outer dimension (d), and a cladding (50) surrounding the moat (40), the cladding (50) having a third refractive index (n3), wherein n1>n3>n2, a ratio of b/a is between 1.5 and 5.0, and a ratio of d/a is between 2.0 and 7.0. The fiber exhibits polarization maintaining properties in a PMB situated below (i.e., at shorter wavelength than SPB), such that beat length normalized to 1550 nm wavelength is preferably less than 10 mm. The fiber (20) may be coupled to optical components in apparatus where single polarization or polarization maintaining properties are desired.
    Type: Application
    Filed: September 29, 2005
    Publication date: January 26, 2006
    Inventors: George Berkey, Xin Chen, Joohyun Koh, Ming-Jun Li, Daniel Nolan
  • Publication number: 20050244118
    Abstract: Disclosed is an optical fiber (20) having a centermost laterally-elongated core (30) having a short dimension (a), a long dimension (b) and a first refractive index (n1), a moat (40) surrounding the central laterally-elongated core, the moat (40) having a second refractive index (n2), an outer dimension (c) and an outer dimension (d), and a cladding (50) surrounding the moat (40), the cladding (50) having a third refractive index (n3), wherein n1>n3>n2, a ratio of b/a is between 1.5 and 5.0, and a ratio of d/a is between 2.0 and 7.0. The fiber supports a single (one and only one) polarization within a Single Polarization Band (SPB). The fiber (20) may be coupled to optical components in apparatus where single polarization properties are desired.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 3, 2005
    Inventors: George Berkey, Xin Chen
  • Publication number: 20050191019
    Abstract: Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
    Type: Application
    Filed: May 6, 2005
    Publication date: September 1, 2005
    Inventors: George Berkey, Dana Bookbinder, Richard Fiacco, Dale Powers
  • Publication number: 20050185905
    Abstract: A dispersion correction optical fiber includes a segmented core having a central core segment, a moat segment and, preferably, a ring segment. The refractive index profile is selected to provide a total dispersion minimum which is located within an operating wavelength band of the fiber. Most preferably, the dispersion value at the minimum is more negative than ?400 ps/nm/km and greater than ?1200 ps/nm/km at 1550 nm. Optical transmission systems including the present invention dispersion correction optical fiber optically coupled to various transmission fibers and dispersion compensating fibers are also disclosed, as is a method of operating the dispersion correction fiber wherein the minimum is located within the desired operating wavelength band.
    Type: Application
    Filed: February 11, 2005
    Publication date: August 25, 2005
    Inventors: James Burke, George Berkey, Dmitri Kuksenkov, Ming-Jun Li, Daniel Nolan, William Wood