Patents by Inventor George Bordakov

George Bordakov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230323765
    Abstract: Processes and systems for synchronizing driller depth data as a function of time with downhole tool acceleration data as a function of time. In some embodiments, the process can include determining one or more in slips conditions for a drill pipe; determining one or more in slips conditions for a downhole tool; interpolating the in slips status indicators on to a common time grid; determining one or more shifts for which an allowed minimum overlapping time period between the acceleration data and the driller depth data is not less than an allowed minimum overlapping time period; determining a correlation coefficient between the interpolated in slips status indicators for each of the one or more shifts; determining a maximum correlation coefficient and a time shift associated with the maximum correlation; and synchronizing the acceleration data and the driller depth data.
    Type: Application
    Filed: August 20, 2021
    Publication date: October 12, 2023
    Inventor: George Bordakov
  • Patent number: 10353107
    Abstract: A petrophysically regularized time domain nuclear magnetic resonance (NMR) inversion includes using an NMR tool to acquire NMR data and inverting the acquired NMR data in a time domain using petrophysical constraints. The inverted NMR data is analyzed. The petrophysical constraints may be identified by: determining a number of porobodons to seek, defining a plurality of zones in which only a subset of porobodon sets is present, and stacking all NMR echoes in each zone satisfying discriminators. The number of porobodons to seek may be based on knowledge of core samples, logs, and NMR sensitivity. The discriminator logs may be logs sensitive to porosity partitioning. A computing system having a processor, a memory, and a program stored in memory may be configured to perform the method. The system may be conveyed downhole on a wireline, a while-drilling drill string, a coiled tubing, a slickline, or a wired drill pipe.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 16, 2019
    Assignees: SCHLUMBERGER TECHNOLOGY CORPORATION, SAUDI ARABIAN OIL COMPANY
    Inventors: David F. Allen, George Bordakov, Steve F. Crary, Philip Savundararaj, Ramsin Eyvazzadeh, Edward Alan Clerke, Johannes J. Buiting, Paul Smith, Jim Funk
  • Patent number: 10330817
    Abstract: A method for generating a porosity log for a reservoir in an organic shale. The method includes receiving data representing one or more parameters in a reservoir in an organic shale. At least one of the parameters includes porosity. By stochastically inverting the data, a distribution of porobodon features is estimated that matches an observed pulse decay curve. The porosity data relates to petrophysical restrictions on at least one of the porobodon features.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: June 25, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: George A. Bordakov, David F. Allen
  • Patent number: 9593571
    Abstract: A method includes accepting as input to a processor measurements of a characteristic of a subsurface formation made at a plurality of spaced apart positions along a pipe string moved along a wellbore. Measurements are made of pipe string depth in the wellbore from the Earth's surface. The measurements of pipe string depth include measurements of apparent depth of each of the spaced apart locations. The subsurface formation is identified from the measurements of the characteristic. A true depth of the subsurface formation is made using the measurements of pipe string depth and apparent depth of the formation from each of the spaced apart positions. A record of measurements of the characteristic with respect to depth corrected for changes in length of the pipe string caused by axial forces along the pipe string is generated.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 14, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY COPRORATION
    Inventors: John Rasmus, George Bordakov
  • Publication number: 20170003412
    Abstract: A method for generating a porosity log for a reservoir in an organic shale. The method includes receiving data representing one or more parameters in a reservoir in an organic shale. At least one of the parameters includes porosity. By stochastically inverting the data, a distribution of porobodon features is estimated that matches an observed pulse decay curve. The porosity data relates to petrophysical restrictions on at least one of the porobodon features.
    Type: Application
    Filed: January 12, 2016
    Publication date: January 5, 2017
    Inventors: George A. Bordakov, David F. Allen
  • Publication number: 20150192694
    Abstract: A method for enhancing axial resolution of a well logging instrument includes classifying a formation into a plurality of single well log measurement value zones to generate a squared well log. A response function of a well logging instrument is decomposed into a plurality of wavelets. The wavelets are convolved with the squared well log to generate a simulated tool response. The simulated tool response is compared to a measured tool response in the formation. The decomposing is repeated with different coefficients for each wavelet and the convolving is repeated until a mismatch between the simulated tool response and the measured tool response falls below a measurement uncertainty of the well logging instrument.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: George A. Bordakov, Markus V. Kliegl, Jaideva C. Goswami
  • Publication number: 20140353037
    Abstract: A method includes accepting as input to a processor measurements of a characteristic of a subsurface formation made at a plurality of spaced apart positions along a pipe string moved along a wellbore. Measurements are made of pipe string depth in the wellbore from the Earth's surface. The measurements of pipe string depth include measurements of apparent depth of each of the spaced apart locations. The subsurface formation is identified from the measurements of the characteristic. A true depth of the subsurface formation is made using the measurements of pipe string depth and apparent depth of the formation from each of the spaced apart positions. A record of measurements of the characteristic with respect to depth corrected for changes in length of the pipe string caused by axial forces along the pipe string is generated.
    Type: Application
    Filed: May 22, 2014
    Publication date: December 4, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: John Rasmus, George Bordakov
  • Publication number: 20140285190
    Abstract: A petrophysically regularized time domain nuclear magnetic resonance (NMR) inversion includes using an NMR tool to acquire NMR data and inverting the acquired NMR data in a time domain using petrophysical constraints. The inverted NMR data is analyzed. The petrophysical constraints may be identified by: determining a number of porobodons to seek, defining a plurality of zones in which only a subset of porobodon sets is present, and stacking all NMR echoes in each zone satisfying discriminators. The number of porobodons to seek may be based on knowledge of core samples, logs, and NMR sensitivity. The discriminator logs may be logs sensitive to porosity partitioning. A computing system having a processor, a memory, and a program stored in memory may be configured to perform the method. The system may be conveyed downhole on a wireline, a while-drilling drill string, a coiled tubing, a slickline, or a wired drill pipe.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 25, 2014
    Inventors: David F. Allen, George Bordakov, Steve F. Crary, Philip Savundararaj, Ramsin Eyvazzadeh, Edward Alan Clerke, Johannes J. Buiting, Paul Smith, Jim Funk