Patents by Inventor George E. Mahley, III

George E. Mahley, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918956
    Abstract: A membrane assembly includes a tube container having an inlet conduit and a first outlet conduit both oriented in a radial direction, and a second outlet conduit oriented in an axial direction; and a hollow fiber membrane element disposed inside the tube container, the hollow first membrane element comprising a first adapter with an axial permeate fluid passage in a center thereof and an inlet gas passage in a peripheral portion thereof; and a second adapter with an axial permeate fluid passage in a center thereof and a non-permeate fluid passage in a peripheral portion thereof.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: March 5, 2024
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventor: George E. Mahley, III
  • Patent number: 11745138
    Abstract: Bayesian recursive estimation is used to analyze performance parameters of a membrane separation system based on historical operational data of a membrane system. Bayesian estimation considers historical data over prior time intervals to predict future membrane separation performance to avoid unexpected downtime and unanticipated maintenance. A set of state variables used for modeling performance is used with a degradation model of to anticipate performance changes and maintenance based on measured properties of permeate, non-permeate, and feed flows.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: September 5, 2023
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventors: Shu Pan, Oleg O. Medvedev, Jose R. Celaya Galvan, George E. Mahley, III, Atsushi Morisato, Jason M. Dietrich
  • Publication number: 20220395781
    Abstract: A membrane assembly includes a tube container having an inlet conduit and a first outlet conduit both oriented in a radial direction, and a second outlet conduit oriented in an axial direction; and a hollow fiber membrane element disposed inside the tube container, the hollow first membrane element comprising a first adapter with an axial permeate fluid passage in a center thereof and an inlet gas passage in a peripheral portion thereof; and a second adapter with an axial permeate fluid passage in a center thereof and a non-permeate fluid passage in a peripheral portion thereof.
    Type: Application
    Filed: December 16, 2020
    Publication date: December 15, 2022
    Inventor: George E. Mahley, III
  • Publication number: 20210308621
    Abstract: Membranes used in membrane separation technologies change over time due to changes in physical characteristics of the membrane. Predicting remaining useful lifetime of a membrane is performed by fitting an evolution model of the membrane to real-time performance characteristics recorded for the membrane and by comparing later performance characteristics of the membrane to the evolution model. Updating an evolution model during membrane operation improves estimates of remaining useful membrane lifetime and allows for accurate estimates of estimated membrane end-of-life.
    Type: Application
    Filed: July 29, 2019
    Publication date: October 7, 2021
    Inventors: Shu Pan, George E. Mahley, III, Atsushi Morisato, Oleg O. Medvedev, Jason M. Dietrich
  • Publication number: 20210138394
    Abstract: Bayesian recursive estimation is used to analyze performance parameters of a membrane separation system based on historical operational data of a membrane system. Bayesian estimation considers historical data over prior time intervals to predict future membrane separation performance to avoid unexpected downtime and unanticipated maintenance. A set of state variables used for modeling performance is used with a degradation model of to anticipate performance changes and maintenance based on measured properties of permeate, non-permeate, and feed flows.
    Type: Application
    Filed: July 29, 2019
    Publication date: May 13, 2021
    Inventors: Shu Pan, Oleg O. Medvedev, Jose R. Celaya Galvan, George E. Mahley, III, Atsushi Morisato, Jason M. Dietrich
  • Publication number: 20170226438
    Abstract: A membrane filter element includes at least two cylindrical-shaped, fiber bundles, one of the fiber bundles containing first fibers fabricated to provide a selected first gas selectivity, a selected first gas permeability, or a selected first gas selectivity and permeability performance and arranged so a first gas permeate exits the membrane element; another of the fiber bundles containing second fibers fabricated to provide a selected second, different gas selectivity, a selected second different gas permeability, or a selected second gas selectivity and permeability performance and arranged so a second different gas permeate exits the membrane element. The different performance characteristics can reduce the number of membrane elements required for gas separation and to improve gas separation performance due to changing gas composition as the gas travels through the membrane element.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Richard D. Peters, George E. Mahley, III, Atsushi Morisato, Fatimah Binti A. Karim, Hatarmizi Bin Hassan, Zalina Binti Ali, Wan Atikahsari Wan Zakaria, Faudzi Mat Isa, Faizal bin Mohamad Fadzillah
  • Patent number: 9630141
    Abstract: A natural gas stream is passed through a single membrane element that is fabricated with two or more distinct types of membrane fibers. The membrane fibers have different characteristics in order to reduce the number of membrane elements required for gas separation and to improve gas separation performance due to changing gas composition because of permeation as the gas travels through the membrane element.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: April 25, 2017
    Assignees: Cameron Solutions, Inc., Petronas Carigali Sdn Bhd
    Inventors: Richard D. Peters, George E. Mahley, III, Atsushi Morisato, Fatimah Binti A. Karim, Hatarmizi Bin Hassan, Zalina Binti Ali, Wan Atikahsari Wan Zakaria, Faudzi Mat Isa, Faizal Bin Mohamad Fadzillah
  • Patent number: 9186629
    Abstract: A shell-side feed, hollow fiber, fluid separation module arranged for counter-flow includes a hollow fiber membrane bundle with each individual hollow fiber membrane in the bundle having an open fiber end and a sealed fiber end. The open fiber ends are encapsulated in a tubesheet located toward the permeate fluid outlet end of the module. The sealed fiber ends are tubesheet-free, uniformly spaced, and located toward the non-permeate fluid outlet end of the module.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: November 17, 2015
    Assignee: Cameron Solutions, Inc.
    Inventor: George E. Mahley, III
  • Publication number: 20150053085
    Abstract: A shell-side feed, hollow fiber, fluid separation module arranged for counter-flow includes a hollow fiber membrane bundle with each individual hollow fiber membrane in the bundle having an open fiber end and a sealed fiber end. The open fiber ends are encapsulated in a tubesheet located toward the permeate fluid outlet end of the module. The sealed fiber ends are tubesheet-free, uniformly spaced, and located toward the non-permeate fluid outlet end of the module.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Applicant: Cameron Solutions, Inc.
    Inventor: George E. Mahley, III
  • Publication number: 20100212501
    Abstract: A natural gas stream is passed through a single membrane element that is fabricated with two or more distinct types of membrane fibers. The membrane fibers have different characteristics in order to reduce the number of membrane elements required for gas separation and to improve gas separation performance due to changing gas composition because of permeation as the gas travels through the membrane element.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 26, 2010
    Inventors: Richard D. Peters, George E. Mahley, III, Atsushi Morisato, Fatimah Binti A. Karim, Hatarmizi Bin Hassan, Zalina Binti Ali, Wan Atikahsari Wan Zakaria, Faudzi Mat Isa, Faizal Bin Mohamad Fadzillah
  • Patent number: 5282964
    Abstract: The present invention is a bore-fed hollow fiber membrane device which possesses improved shellside countercurrent flow distribution. More specifically, the hollow fiber membrane bundle has a radial Peclet number of about 30 or lower which results in improved fluid recovery and productivity.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: February 1, 1994
    Assignee: The Dow Chemical Company
    Inventors: Thomas C. Young, Terrence L. Caskey, Johnny L. Trimmer, George E. Mahley, III, Randall A. Yoshisato, John A. Jensvold
  • Patent number: 5202023
    Abstract: The present invention is a fluid separation module having improved permeate flow characteristics and improved space/volume requirements. Such modules comprise a hollow fiber bundle, a first and optional second tubesheet, an optional casing, a feed inlet, a permeate outlet, and a non-permeate outlet. The module is coiled, curved or bent into a useful non-linear shape which reduces the space requirements for the module essentially without diminishing the effectiveness of the fluid separation. The feed fluid is introduced to the module either in a boreside or a shellside manner. Coil, french horn, spiral or U-shaped configuration or combinations thereof are useful.
    Type: Grant
    Filed: July 2, 1992
    Date of Patent: April 13, 1993
    Assignee: The Dow Chemical Company
    Inventors: Johnny L. Trimmer, George E. Mahley, III, Stephen A. Dunning, Daniel O. Clark