Patents by Inventor George F. Walker
George F. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10612085Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.Type: GrantFiled: June 23, 2015Date of Patent: April 7, 2020Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
-
Patent number: 10612084Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.Type: GrantFiled: December 30, 2014Date of Patent: April 7, 2020Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
-
Patent number: 10592503Abstract: Exemplary methods and devices herein receive an inquiry and automatically analyze words used in the inquiry, potential answers, and data maintained by evidence sources using the computerized device to determine the sensitivity level associated with the inquiry. The sensitivity level associated with the inquiry represents an emotional and cognitive state of the user. Such methods and devices automatically generate at least one follow-up question based on the sensitivity level associated with the inquiry and receive a follow-up response into the computerized device in response to the follow-up question(s). The methods and devices also automatically produce scores for the potential answers using the computerized device based on the inquiry, the follow-up responses, and ratings of the evidence sources. Following this, these methods and devices automatically generate output answers to the inquiry based on the sensitivity level associated with the inquiry using the computerized device.Type: GrantFiled: August 16, 2016Date of Patent: March 17, 2020Assignee: International Business Machines CorporationInventors: James R. Kozloski, James W. Murdock, IV, Clifford A. Pickover, George F. Walker
-
Publication number: 20160357744Abstract: Exemplary methods and devices herein receive an inquiry and automatically analyze words used in the inquiry, potential answers, and data maintained by evidence sources using the computerized device to determine the sensitivity level associated with the inquiry. The sensitivity level associated with the inquiry represents an emotional and cognitive state of the user. Such methods and devices automatically generate at least one follow-up question based on the sensitivity level associated with the inquiry and receive a follow-up response into the computerized device in response to the follow-up question(s). The methods and devices also automatically produce scores for the potential answers using the computerized device based on the inquiry, the follow-up responses, and ratings of the evidence sources. Following this, these methods and devices automatically generate output answers to the inquiry based on the sensitivity level associated with the inquiry using the computerized device.Type: ApplicationFiled: August 16, 2016Publication date: December 8, 2016Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: James R. Kozloski, James W. Murdock, IV, Clifford A. Pickover, George F. Walker
-
Patent number: 9471623Abstract: Exemplary methods and devices herein receive an inquiry and automatically analyze words used in the inquiry, potential answers, and data maintained by evidence sources using the computerized device to determine the sensitivity level associated with the inquiry. The sensitivity level associated with the inquiry represents an emotional and cognitive state of the user. Such methods and devices automatically generate at least one follow-up question based on the sensitivity level associated with the inquiry and receive a follow-up response into the computerized device in response to the follow-up question(s). The methods and devices also automatically produce scores for the potential answers using the computerized device based on the inquiry, the follow-up responses, and ratings of the evidence sources. Following this, these methods and devices automatically generate output answers to the inquiry based on the sensitivity level associated with the inquiry using the computerized device.Type: GrantFiled: October 21, 2013Date of Patent: October 18, 2016Assignee: International Business Machines CorporationInventors: James R. Kozloski, James W. Murdock, IV, Clifford A. Pickover, George F. Walker
-
Patent number: 9298766Abstract: Exemplary methods and devices herein receive an inquiry and automatically analyze words used in the inquiry, potential answers, and data maintained by evidence sources using the computerized device to determine the sensitivity level associated with the inquiry. The sensitivity level associated with the inquiry represents an emotional and cognitive state of the user. Such methods and devices automatically generate at least one follow-up question based on the sensitivity level associated with the inquiry and receive a follow-up response into the computerized device in response to the follow-up question(s). The methods and devices also automatically produce scores for the potential answers using the computerized device based on the inquiry, the follow-up responses, and ratings of the evidence sources. Following this, these methods and devices automatically generate output answers to the inquiry based on the sensitivity level associated with the inquiry using the computerized device.Type: GrantFiled: October 9, 2013Date of Patent: March 29, 2016Assignee: International Business Machines CorporationInventors: James R. Kozloski, James W. Murdock, IV, Clifford A. Pickover, George F. Walker
-
Patent number: 9250206Abstract: A system of controlled translocation of macromolecules by gel electrophoresis employs a funnel nanopore structure. A graphene portion is attached to a porous material layer including funnel-shaped pores such that the graphene portion blocks the side of the porous material layer having openings for smaller pores. A pair of electrical contacts is formed on the graphene portion. A dielectric material layer may be deposited to hold the graphene portion in place. A nanoscale hole is formed through the dielectric material layer and the graphene portion to provide a smallest opening in a funnel nanopore structure. The funnel nanopore structure is placed within a capsule configured for gel electrophoresis. A linear chain of molecules can pass through a funnel-shaped pore and the nanoscale hole during the gel electrophoresis. A graphene nanopore detector allows measurement of blockage current for sufficient resolution of base pairs in DNA's.Type: GrantFiled: April 4, 2013Date of Patent: February 2, 2016Assignee: International Business Machines CorporationInventor: George F. Walker
-
Patent number: 9250207Abstract: A system of controlled translocation of macromolecules by gel electrophesis employs a funnel nanopore structure. A graphene portion is attached to a porous material layer including funnel-shaped pores such that the graphene portion blocks the side of the porous material layer having openings for smaller pores. A pair of electrical contacts is formed on the graphene portion. A dielectric material layer may be deposited to hold the graphene portion in place. A nanoscale hole is formed through the dielectric material layer and the graphene portion to provide a smallest opening in a funnel nanopore structure. The funnel nanopore structure is placed within a capsule configured for gel electrophoresis. A linear chain of molecules can pass through a funnel-shaped pore and the nanoscale hole during the gel electrophoresis. A graphene nanopore detector allows measurement of blockage current for sufficient resolution of base pairs in DNA's.Type: GrantFiled: September 10, 2013Date of Patent: February 2, 2016Assignee: International Business Machines CorporationInventor: George F. Walker
-
Publication number: 20150284791Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.Type: ApplicationFiled: June 23, 2015Publication date: October 8, 2015Inventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
-
Publication number: 20150285764Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.Type: ApplicationFiled: December 30, 2014Publication date: October 8, 2015Inventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
-
Publication number: 20150100521Abstract: Exemplary methods and devices herein receive an inquiry and automatically analyze words used in the inquiry, potential answers, and data maintained by evidence sources using the computerized device to determine the sensitivity level associated with the inquiry. The sensitivity level associated with the inquiry represents an emotional and cognitive state of the user. Such methods and devices automatically generate at least one follow-up question based on the sensitivity level associated with the inquiry and receive a follow-up response into the computerized device in response to the follow-up question(s). The methods and devices also automatically produce scores for the potential answers using the computerized device based on the inquiry, the follow-up responses, and ratings of the evidence sources. Following this, these methods and devices automatically generate output answers to the inquiry based on the sensitivity level associated with the inquiry using the computerized device.Type: ApplicationFiled: October 9, 2013Publication date: April 9, 2015Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: James R. Kozloski, James W. Murdock, IV, Clifford A. Pickover, George F. Walker
-
Publication number: 20150099257Abstract: Exemplary methods and devices herein receive an inquiry and automatically analyze words used in the inquiry, potential answers, and data maintained by evidence sources using the computerized device to determine the sensitivity level associated with the inquiry. The sensitivity level associated with the inquiry represents an emotional and cognitive state of the user. Such methods and devices automatically generate at least one follow-up question based on the sensitivity level associated with the inquiry and receive a follow-up response into the computerized device in response to the follow-up question(s). The methods and devices also automatically produce scores for the potential answers using the computerized device based on the inquiry, the follow-up responses, and ratings of the evidence sources. Following this, these methods and devices automatically generate output answers to the inquiry based on the sensitivity level associated with the inquiry using the computerized device.Type: ApplicationFiled: October 21, 2013Publication date: April 9, 2015Applicant: International Business Machines CorporationInventors: James R. Kozloski, James W. Murdock, IV, Clifford A. Pickover, George F. Walker
-
Patent number: 8878259Abstract: Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.Type: GrantFiled: July 23, 2012Date of Patent: November 4, 2014Assignee: International Business Machines CorporationInventors: Harold J. Hovel, Qiang Huang, Xiaoyan Shao, James Vichiconti, George F. Walker
-
Publication number: 20140299473Abstract: A system of controlled translocation of macromolecules by gel electrophesis employs a funnel nanopore structure. A graphene portion is attached to a porous material layer including funnel-shaped pores such that the graphene portion blocks the side of the porous material layer having openings for smaller pores. A pair of electrical contacts is formed on the graphene portion. A dielectric material layer may be deposited to hold the graphene portion in place. A nanoscale hole is formed through the dielectric material layer and the graphene portion to provide a smallest opening in a funnel nanopore structure. The funnel nanopore structure is placed within a capsule configured for gel electrophoresis. A linear chain of molecules can pass through a funnel-shaped pore and the nanoscale hole during the gel electrophoresis. A graphene nanopore detector allows measurement of blockage current for sufficient resolution of base pairs in DNA's.Type: ApplicationFiled: September 10, 2013Publication date: October 9, 2014Applicant: International Business Machines CorporationInventor: George F. Walker
-
Publication number: 20140299474Abstract: A system of controlled translocation of macromolecules by gel electrophesis employs a funnel nanopore structure. A graphene portion is attached to a porous material layer including funnel-shaped pores such that the graphene portion blocks the side of the porous material layer having openings for smaller pores. A pair of electrical contacts is formed on the graphene portion. A dielectric material layer may be deposited to hold the graphene portion in place. A nanoscale hole is formed through the dielectric material layer and the graphene portion to provide a smallest opening in a funnel nanopore structure. The funnel nanopore structure is placed within a capsule configured for gel electrophoresis. A linear chain of molecules can pass through a funnel-shaped pore and the nanoscale hole during the gel electrophoresis. A graphene nanopore detector allows measurement of blockage current for sufficient resolution of base pairs in DNA's.Type: ApplicationFiled: April 4, 2013Publication date: October 9, 2014Applicant: International Business Machines CorporationInventor: George F. Walker
-
Patent number: 8764968Abstract: A technique for nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.Type: GrantFiled: September 7, 2012Date of Patent: July 1, 2014Assignee: International Business Machines CorporationInventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Gustavo A. Stolovitzky, Philip S. Waggoner, George F. Walker
-
Patent number: 8691067Abstract: A technique for controlling the motion of one or more charged entities linked to a polymer through a nanochannel is provided. A first reservoir and a second reservoir are connected by the nanochannel. An array of electrodes is positioned along the nanochannel, where fluid fills the first reservoir, the second reservoir, and the nanochannel. A first electrode is in the first reservoir and a second electrode is in the second reservoir. The first and second electrodes are configured to direct the one or more charged entities linked to the polymer into the nanochannel. An array of electrodes is configured to trap the one or more charged entities in the nanochannel responsive to being controlled for trapping. The array of electrodes is configured to move the one or more charged entities along the nanochannel responsive to being controlled for moving.Type: GrantFiled: September 16, 2011Date of Patent: April 8, 2014Assignee: International Business Machines CorporationInventors: Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Ajay k. Royyuru, Gustavo A. Stolovitzky, George F. Walker
-
Patent number: 8641879Abstract: A technique for controlling the motion of one or more charged entities linked to a polymer through a nanochannel is provided. A first reservoir and a second reservoir are connected by the nanochannel. An array of electrodes is positioned along the nanochannel, where fluid fills the first reservoir, the second reservoir, and the nanochannel. A first electrode is in the first reservoir and a second electrode is in the second reservoir. The first and second electrodes are configured to direct the one or more charged entities linked to the polymer into the nanochannel. An array of electrodes is configured to trap the one or more charged entities in the nanochannel responsive to being controlled for trapping. The array of electrodes is configured to move the one or more charged entities along the nanochannel responsive to being controlled for moving.Type: GrantFiled: September 12, 2012Date of Patent: February 4, 2014Assignee: International Business Machines CorporationInventors: Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, George F. Walker
-
Patent number: 8613908Abstract: The invention is a pharmaceutical product which may be authenticated, comprising identifying markers disposed in the pharmaceutical product. The pharmaceutical product is selected from the group consisting of a pill, a tablet, a caplet, and a capsule. The identifying markers are gel pellets made from a hydroscopic medium having an indicia imprinted thereon and expand volumetrically when contacted with a liquid.Type: GrantFiled: April 29, 2008Date of Patent: December 24, 2013Inventor: George F. Walker
-
Publication number: 20130068617Abstract: A technique for controlling the motion of one or more charged entities linked to a polymer through a nanochannel is provided. A first reservoir and a second reservoir are connected by the nanochannel. An array of electrodes is positioned along the nanochannel, where fluid fills the first reservoir, the second reservoir, and the nanochannel. A first electrode is in the first reservoir and a second electrode is in the second reservoir. The first and second electrodes are configured to direct the one or more charged entities linked to the polymer into the nanochannel. An array of electrodes is configured to trap the one or more charged entities in the nanochannel responsive to being controlled for trapping. The array of electrodes is configured to move the one or more charged entities along the nanochannel responsive to being controlled for moving.Type: ApplicationFiled: September 16, 2011Publication date: March 21, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, George F. Walker