Patents by Inventor George G. Adams

George G. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9117601
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: August 25, 2015
    Assignee: Northeastern University
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Publication number: 20140202860
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 24, 2014
    Applicant: Northeastern University
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Patent number: 8637356
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 28, 2014
    Assignee: Northeastern University
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Publication number: 20120267223
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Application
    Filed: June 27, 2012
    Publication date: October 25, 2012
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Patent number: 8211765
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 3, 2012
    Assignee: Northeastern University
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Publication number: 20120052649
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 1, 2012
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Patent number: 8031514
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: October 4, 2011
    Assignee: Northeastern University
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Publication number: 20100116631
    Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
    Type: Application
    Filed: April 9, 2008
    Publication date: May 13, 2010
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
  • Patent number: 6701038
    Abstract: A micro-electromechanical optical switch assembly is provided for an optical network. The switch assembly includes arrays of input and output optical fibers and optical components for selecting light paths that connect any selected pair of input and output fibers. The optical components include optical switching elements, such as torsionally supported micromechanical mirrors that are electrostatically actuated to rotate to direct the light beam along the desired light path. The mirrors are bulk micromachined into a semiconductor wafer, preserving their optical qualities, and formed into a chip mated to a cover. The package incorporates alignment elements to ensure correct position and orientation of the optical components in the package.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: March 2, 2004
    Assignee: The Microoptical Corporation
    Inventors: Noa M. Rensing, George G. Adams, Nicol E. McGruer, Robert W. McClelland, Paul M. Zavracky
  • Publication number: 20020164113
    Abstract: A micro-electromechanical optical switch assembly is provided for an optical network. The switch assembly includes arrays of input and output optical fibers and optical components for selecting light paths that connect any selected pair of input and output fibers. The optical components include optical switching elements, such as torsionally supported micromechanical mirrors that are electrostatically actuated to rotate to direct the light beam along the desired light path. The mirrors are bulk micromachined into a semiconductor wafer, preserving their optical qualities, and formed into a chip mated to a cover. The package incorporates alignment elements to ensure correct position and orientation of the optical components in the package.
    Type: Application
    Filed: March 5, 2002
    Publication date: November 7, 2002
    Applicant: The MicroOptical Corporation
    Inventors: Noa M. Rensing, George G. Adams, Nicol E. McGruer, Robert W. McClelland, Paul M. Zavracky
  • Patent number: 5608983
    Abstract: A waterfowl decoy system that may be used by hunters to lure waterfowl within effective killing range is disclosed. The decoy system uses a decoy having a realistic exterior cooperatively coupled to a flotation device. One preferred embodiment of the invention uses a conventional two liter bottle as a flotation device. The decoy resembles the outer appearance of a selected waterfowl. The decoy comprises a shell molded or formed of plastic or wood. The shell may be painted or molded into almost any preferential color or shape to lure the desired game. The shell interior supports a foam subframe that frictionally locks a portion of another decoy within the interior when the decoys are stacked. The foam subframe also frictionally engages the flotation device and serves as a stabilizer when the decoy system is deployed. The shell interior houses a receptacle that selectively couples the flotation device to the decoy.
    Type: Grant
    Filed: September 11, 1995
    Date of Patent: March 11, 1997
    Inventor: George G. Adams