Patents by Inventor George Houghton

George Houghton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11213171
    Abstract: A blending apparatus blade is described which includes one or more arms and which is configured to be rotated in a first rotational direction to perform a blending operation and in a second rotational direction to perform a mixing operation. The blade may further include a paddle portion which is designed to improve mixing during a mixing operation whilst having minimal impact on the blending operation. Also described is a blending apparatus including this blade. The apparatus is preferably portable and the contents can be sealed within for transport. The apparatus may also include a drinking spout with a removable cap so that the contents can be consumed directly from the apparatus, a method of controlling a blending apparatus is also described.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: January 4, 2022
    Assignee: PROMiXX LIMITED
    Inventors: Joseph Paul Faulkner-Edwards, William George Houghton-Jones
  • Publication number: 20190082893
    Abstract: A blending apparatus blade is described which includes one or more arms and which is configured to be rotated in a first rotational direction to perform a blending operation and in a second rotational direction to perform a mixing operation. The blade may further include a paddle portion which is designed to improve mixing during a mixing operation whilst having minimal impact on the blending operation. Also described is a blending apparatus including this blade. The apparatus is preferably portable and the contents can be sealed within for transport. The apparatus may also include a drinking spout with a removable cap so that the contents can be consumed directly from the apparatus, a method of controlling a blending apparatus is also described.
    Type: Application
    Filed: March 14, 2017
    Publication date: March 21, 2019
    Inventors: Joseph Paul Faulkner-Edwards, William George Houghton-Jones
  • Publication number: 20070232954
    Abstract: An automatic skin biopsy device that includes a drive unit and a variety of shapes and sizes of disposable cartridges. The device is capable of automatic extraction of a small and precisely located portion of skin having a shape similar to a wide canoe. A disposable cartridge is mounted onto and driven by the drive unit which incorporates at least one gear motor. In a preferred embodiment the gear motor in the drive unit drives, via gears and cams, two cutter blades in the disposable cartridge through separate curved paths to extract from the skin the generally wide canoe-shaped skin sample. Preferably another gear motor via gear and cam action produces back and forth oscillation of the blades to assure easy slicing of the skin tissue. The canoe-shape incision that is about 1 to 4 mm deep produces a good biopsy sample and the incision is easily closed with a medical staple or sutures. In preferred embodiments a stapler is provided as a part of the sample acquisition device.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 4, 2007
    Inventors: Jeffrey Harris, George Houghton, Adam Harris
  • Patent number: 6611696
    Abstract: An apparatus and method for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link. A narrow band oscillator power source is substituted for the signal transmitting electronics associated with a first antenna and a power detector is substituted for the signal receiving electronics associated with a second antenna. In preferred embodiments after a first alignment procedure is performed, the procedure is repeated with an oscillator power source connected to the second antenna and a power detector connected to the first antenna. In other preferred embodiments the antennas are pre-aligned using a signaling mirror or a narrow beam search light or laser. After the antennas are aligned the transceiver electronics are reconnected. In preferred embodiments the communication link operates within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps.
    Type: Grant
    Filed: January 5, 2002
    Date of Patent: August 26, 2003
    Assignee: Trex Enterprises Corporation
    Inventors: Richard Chedester, Paul Johnson, Thomas Lambert, Randall B. Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko, George Houghton
  • Publication number: 20030027586
    Abstract: A point-to-point, wireless, millimeter wave communications links equipped with tracking antennas to maintain pencil beam contact between the links. In a preferred embodiment the communication links operate within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. In a preferred embodiment the first and second spectral ranges are 92.3-93.2 GHz and 94.1-95.0 GHz and the half power beam width is about 0.36 degrees or less.
    Type: Application
    Filed: October 25, 2001
    Publication date: February 6, 2003
    Inventors: Paul Johnson, Randall Olsen, John Lovberg, Kenneth Y. Tang, George Houghton
  • Publication number: 20020177405
    Abstract: An apparatus and method for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link. A narrow band oscillator power source is substituted for the signal transmitting electronics associated with a first antenna and a power detector is substituted for the signal receiving electronics of associated with a second antenna. In preferred embodiments after a first alignment procedure is performed, the procedure is repeated with an oscillator power source connected to the second antenna and a power detector connected to the first antenna. In other preferred embodiments the antennas are pre-aligned using a signaling mirror or a narrow beam search light or laser. After the antennas are aligned the transceiver electronics are reconnected. In preferred embodiments communication link operates within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps.
    Type: Application
    Filed: January 5, 2002
    Publication date: November 28, 2002
    Inventors: Richard Chedester, Paul Johnson, Thomas Lambert, Randall B. Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko, George Houghton
  • Publication number: 20020176139
    Abstract: A point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps and at ranges of several miles during normal weather conditions to connect a local communication network through a SONET aggregation unit to a high speed fiber-optics network. In a preferred embodiment a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum.
    Type: Application
    Filed: December 18, 2001
    Publication date: November 28, 2002
    Inventors: Louis Slaughter, Randall Olsen, Chester Phillips, Paul Johnson, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko, Ryan Mooney
  • Publication number: 20020164959
    Abstract: A point-to-point, wireless, millimeter wave communications link at ranges of several miles during normal weather conditions. In a preferred embodiment a communication link operates within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. Antennas and rigid support towers are described to maintain beam directional stability to less than one-half the half-power beam width. In a preferred embodiment the first and second spectral ranges are 92.3-93.2 GHz and 94.1-95.
    Type: Application
    Filed: June 2, 2001
    Publication date: November 7, 2002
    Inventors: Randall Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko, George Houghton
  • Publication number: 20020164960
    Abstract: A communication network including a point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps. This link is combined with a local network that includes a fixed wireless network to provide high speed digital data communication for users. In preferred embodiments the network also include Ethernet service to additional users. In these preferred embodiments many or most of these large number of users are temporary users such as participants at a conference. In a preferred embodiment, a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth.
    Type: Application
    Filed: November 13, 2001
    Publication date: November 7, 2002
    Inventors: Louis Slaughter, Chester Phillips, Paul Johnson, Randall Olsen, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko
  • Publication number: 20020164946
    Abstract: A communication network including a point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps. This link is combined with a local network which includes at least one multi-beam antenna to provide high speed digital data communication for multiple users. In preferred embodiments the network also includes Ethernet service to additional users. In these preferred embodiments many or most of these multiple users are temporary users such as participants at a conference. In a preferred embodiment, a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth.
    Type: Application
    Filed: December 1, 2001
    Publication date: November 7, 2002
    Inventors: Randell Olsen, Louis Slaughter, Chester Phillips, Paul Johnson, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko
  • Publication number: 20020165001
    Abstract: A point-to-point, wireless, millimeter wave communications links equipped with tracking antennas to maintain pencil beam contact between the links. In a preferred embodiment the antennas are flat panel tracking antennas and the communication links operate within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. In a preferred embodiment the first and second spectral ranges are 92.3-93.2 GHz and 94.1-95.0 GHz and the half power beam width is about 0.36 degrees or less.
    Type: Application
    Filed: October 30, 2001
    Publication date: November 7, 2002
    Inventors: Chester Phillips, Paul Johnson, Randall Olsen, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko
  • Patent number: 6057915
    Abstract: A projectile tracking system for acquiring and precisely tracking a projectile in flight in order to reveal the source from which the projectile was fired. The source is revealed by the back projection of a 3-dimensional track file. The system is particularly suited for tracking a bullet fired by a sniper and identifying the location of the sniper. Projectiles of interest typically become hot due to aerodynamic heating. A telescope focuses infrared light from a relatively large field of view on to an infrared focal plane array. In a detection mode, the system searches for the infrared signature of the projectile. The telescope's field of view is steered in the azimuth by a step and stare mirror which is driven by an azimuth drive motor mounted on the frame. When a projectile is detected, the system switches to a tracking mode and the mirror is steered by the azimuth drive motor and a pivot motor to track the projectile.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: May 2, 2000
    Assignee: ThermoTrex Corporation
    Inventors: Mark Squire, Murray Dunn, George Houghton
  • Patent number: 5796474
    Abstract: The present invention provides a projectile tracking system for acquiring and precisely tracking a projectile in flight in order to reveal the source from which the projectile was fired. The source is revealed by the back projection of a 3-dimensional track file. The system is particularly suited for tracking a bullet fired by a sniper and identifying the location of the sniper. Projectiles of interest are typically traveling at a substantial fraction of the speed of sound or even faster than the speed of sound and therefore become hot due to aerodynamic heating. A telescope focuses infrared light from a relatively large field of view on to an infrared focal plane array. In a projectile detection mode, the system searches for the infrared signature of the fast moving projectile. The telescope's field of view is steered in the azimuth by a step and stare mirror which is driven by an azimuth drive motor mounted on the frame.
    Type: Grant
    Filed: June 21, 1996
    Date of Patent: August 18, 1998
    Assignee: ThermoTrex Corporation
    Inventors: Mark Squire, Howard Hyman, Richard Trissel, George Houghton, Daniel Leslie, Murray Dunn
  • Patent number: 5712890
    Abstract: The invention provides a digital x-ray mammography device capable of imaging a full breast. A movable aperture coupled with a movable x-ray image detector permits x-ray image data to be obtained with respect to partially overlapping x-ray beam paths from an x-ray source passing through a human breast. A digital computer programmed with a stitching algorithm produces a composite image of the breast from the image data obtained with respect to each path. In a preferred embodiment, a Schmidt camera images visible light produced at an x-ray to visible light conversion surface onto a digital detector array to produce an overlapping image pane with respect to each overlapping beam path.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: January 27, 1998
    Assignee: Thermotrex Corp.
    Inventors: Brett Spivey, Jean-Marie Tran, Lee Morsell, George Houghton, Steve Horton, Peter Martin