Patents by Inventor George Hudelson

George Hudelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11858210
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: January 2, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Publication number: 20230264423
    Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.
    Type: Application
    Filed: February 12, 2023
    Publication date: August 24, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander Barbati, Michael Gibson, George Hudelson, Nicholas Mykulowycz, Brian Kernan, Nihan Tuncer
  • Patent number: 11717887
    Abstract: A method is provided for printing a three-dimensional object. The method comprises, depositing a layer of metal powder onto a powder bed of a three-dimensional printer. A liquid is heated to generate a vapor. The liquid is removed from the vapor to dry the vapor by heating the vapor above a condensation temperature of the liquid. The dry vapor is deposited onto the powder bed of the three-dimensional printer.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: August 8, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel M. Sachs, Paul A. Hoisington, Richard Remo Fontana, Jamison Go, Joseph Johnson, George Hudelson, Cassia Lockwood, Michael Goldblatt
  • Publication number: 20230202105
    Abstract: The devices, systems, and methods of the present disclosure are directed to powder spreading and binder distribution techniques for consistent and rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. For example, a powder may be spread to form a layer along a volume defined by a powder box, a binder may be deposited along the layer to form a layer of a three-dimensional object, and the direction of spreading the layer and depositing the binder may be in a first direction and in a second direction, different from the first direction, thus facilitating rapid formation of the three-dimensional object with each passage of the print carriage over the volume. Powder delivery, powder spreading, thermal energy delivery, and combinations thereof, may facilitate consistently achieving quality standards as the rate of fabrication of the three-dimensional object is increased.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Jonah Myerberg, Ricardo Fulop, Brett Schuster, Emanuel Michael Sachs, Paul A. Hoisington, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, George Hudelson
  • Publication number: 20230150193
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Application
    Filed: September 29, 2022
    Publication date: May 18, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Patent number: 11623389
    Abstract: The devices, systems, and methods of the present disclosure are directed to powder spreading and binder distribution techniques for consistent and rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. For example, a powder may be spread to form a layer along a volume defined by a powder box, a binder may be deposited along the layer to form a layer of a three-dimensional object, and the direction of spreading the layer and depositing the binder may be in a first direction and in a second direction, different from the first direction, thus facilitating rapid formation of the three-dimensional object with each passage of the print carriage over the volume. Powder delivery, powder spreading, thermal energy delivery, and combinations thereof, may facilitate consistently achieving quality standards as the rate of fabrication of the three-dimensional object is increased.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: April 11, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Jonah Myerberg, Ricardo Fulop, Brett Schuster, Emanuel Michael Sachs, Paul A. Hoisington, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, George Hudelson
  • Patent number: 11597153
    Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: March 7, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Michael Andrew Gibson, George Hudelson, Nicholas Mark Mykulowycz, Brian D. Kernan, Nihan Tuncer
  • Publication number: 20220355381
    Abstract: A method of conditioning layers of build material powder for metal additive manufacturing including depositing an amount of build material powder on a work surface, the amount of build material powder having a lower surface separated from an upper surface by a height. A roller is traversed across the work surface in a first direction while rotating the roller in a direction opposed to the first direction. During the step of traversing the roller, a lower surface of the roller extends below the upper surface of the amount of build material powder by a distance. The roller has a surface conditioning configured to, in conjunction with a controlled speed of the rotation of the roller, provide a powder density in a compacted layer within a predetermined powder density range.
    Type: Application
    Filed: November 12, 2021
    Publication date: November 10, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Alexander C Barbati
  • Patent number: 11491716
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: November 8, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Publication number: 20220250149
    Abstract: Embodiments described herein relate to methods and systems for controlling the packing behavior of powders for additive manufacturing applications. In some embodiments, a method for additive manufacturing includes adding a packing modifier to a base powder to form a build material. The build material may be spread to form a layer across a powder bed, and the build material may be selectively joined along a two-dimensional pattern associated with the layer. The steps of spreading a layer of build material and selectively joining the build material in the layer may be repeated to form a three-dimensional object. The packing modifier may be selected to enhance one or more powder packing and/or powder flow characteristics of the base powder to provide for improved uniformity of the additive manufacturing process, promote sintering, and/or to enhance the properties of the manufactured three-dimensional objects.
    Type: Application
    Filed: November 8, 2019
    Publication date: August 11, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Michael A. Gibson, Alexander C. Barbati, George Hudelson, Robert J. Nick, Paul A. Hoisington, Brian D. Kernan
  • Publication number: 20220234104
    Abstract: A method of metal additive manufacturing, including forming a three-dimensional object as a successive series of layers. At least some of the successive layers is formed by depositing a layer of build material powder on a work surface, depositing a predetermined pattern of fugitive fluid and depositing a predetermined pattern of binder fluid, wherein the predetermined pattern of fugitive fluid improves at least one characteristic of the three-dimensional part.
    Type: Application
    Filed: November 8, 2021
    Publication date: July 28, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Michael A. Gibson, Richard Remo Fontana, George Hudelson, Christopher Benjamin Renner, Paul A. Hoisington, Anna Marie Trump
  • Publication number: 20220032377
    Abstract: Systems and methods are disclosed for forming a three-dimensional object using additive manufacturing. One method includes depositing a first amount of powder material onto a powder print bed of a printing system, spreading the first amount of powder material across the powder print bed to form a first layer, measuring a density of powder material within the powder print bed, and adjusting a parameter of the printing system based on the measured density of the powder material within the powder print bed.
    Type: Application
    Filed: July 8, 2021
    Publication date: February 3, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Paul A. Hoisington, Richard Remo Fontana, Emanuel Michael Sachs, Christopher Anthony Craven, Matthew McCambridge
  • Publication number: 20210283693
    Abstract: The devices, systems, and methods of the present disclosure are directed to powder spreading and binder distribution techniques for consistent and rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. For example, a powder may be spread to form a layer along a volume defined by a powder box, a binder may be deposited along the layer to form a layer of a three-dimensional object, and the direction of spreading the layer and depositing the binder may be in a first direction and in a second direction, different from the first direction, thus facilitating rapid formation of the three-dimensional object with each passage of the print carriage over the volume. Powder delivery, powder spreading, thermal energy delivery, and combinations thereof, may facilitate consistently achieving quality standards as the rate of fabrication of the three-dimensional object is increased.
    Type: Application
    Filed: April 20, 2018
    Publication date: September 16, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jonah Myerberg, Ricardo Fulop, Brett Schuster, Emanuel Michael Sachs, Paul A. Hoisington, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, George Hudelson
  • Publication number: 20210276083
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving strength fabrication of three-dimensional objects formed through layer-by-layer process in which an ink is delivery of a binder delivered onto successive layers of a powder of inorganic particles in a powder bed. More specifically, nanoparticles of inorganic material can may be introduced into one or more layers of the metal powder in the powder bed and thermally processed to facilitate sinter necking, in the powder bed, of the metal particles forming the three-dimensional object. Such sinter necking in the powder bed can may improve strength of the three-dimensional objects being fabricated and, also or instead, can may reduce the likelihood of defects associated with subsequent processing of the three-dimensional objects (e.g., slumping and shrinking in a final sintering stage and/or inadequate densification of the final part).
    Type: Application
    Filed: February 21, 2018
    Publication date: September 9, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Richard Remo Fontana, Michael Andrew Gibson, George Hudelson
  • Publication number: 20210237347
    Abstract: Systems, methods, components, and materials are disclosed for stereolithographic fabrication of three-dimensional, dense objects. A resin including at least one component of a binder system and dispersed particles can be exposed to an activation light source. The activation light source can cure the at least one component of the binder system to form a green object, which can include the at least one component of the binder system and the particles. A dense object can be formed from the green object by removing the at least one component of the binder system in an extraction process and thermally processing particles to coalesce into the dense object.
    Type: Application
    Filed: November 14, 2017
    Publication date: August 5, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Richard Remo Fontana, Michael Andrew Gibson, George Hudelson
  • Publication number: 20210237159
    Abstract: Techniques for depowdering additively fabricated parts are described. The techniques utilize various mechanisms to separate powder from parts. For instance, techniques for depowdering described herein may include fabrication of auxiliary structures in addition to fabrication of parts. Certain auxiliary structures may aid with depowdering operations, and may be fabricated along with parts during an additive fabrication process. The auxiliary structures may be shaped and/or have positional and/or geometrical relationships to the parts during fabrication. For instance, an auxiliary structure may include a cage structure fabricated around one or more parts.
    Type: Application
    Filed: December 10, 2020
    Publication date: August 5, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jamison Go, Michael Santorella, Jonah Samuel Myerberg, Matthew McCambridge, Alexander LeGendre, Robert J. Nick, Michael Goldblatt, Robert Michael Shydo, JR., Midnight Zero, Emanuel M. Sachs, Jeffrey von Loesecke, Alexander K. McCalmont, George Hudelson, Joe Pantano
  • Publication number: 20210170483
    Abstract: An additive manufacturing method includes depositing a first amount of metal powder onto a powder bed of a printing system, spreading the first amount of metal powder across the powder bed to form a first layer, and depositing a first amount of binder material on the first layer. The additive manufacturing method also includes exposing the first layer to a first lighting condition, imaging the first layer under the first lighting condition to generate a first image, analyzing the first image of the first layer, and determining whether to adjust at least one printing parameter based on the analyzing.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 10, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Matthew McCambridge, Jake Dec, Alexander Legendre
  • Publication number: 20210154735
    Abstract: A system and corresponding method for additive manufacturing of a three-dimensional (3D) object to improve packing density of a powder bed used in the manufacturing process. The system and corresponding method enable higher density packing of the powder. Such higher density packing leads to better mechanical interlocking of particles, leading to lower sintering temperatures and reduced deformation of the 3D object during sintering. An embodiment of the system comprises means for adjusting a volume of a powder metered onto a top surface of the powder bed to produce an adjusted metered volume and means for spreading the adjusted metered volume to produce a smooth volume for forming a smooth layer of the powder with controlled packing density across the top surface of the powder bed. The controlled packing density enables uniform shrinkage, without warping, of the 3D object during sintering to produce higher quality 3D printed objects.
    Type: Application
    Filed: February 3, 2021
    Publication date: May 27, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Emanuel M. Sachs, Glenn A. Jordan, Midnight Zero
  • Publication number: 20210154926
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Publication number: 20210114308
    Abstract: An additive manufacturing system, and corresponding method, prints a sacrificial component using a 3D printing system that includes a spreading mechanism for spreading unbound powder to form layers of a powder bed and a printing mechanism for jetting binder fluid into the unbound powder to form the sacrificial component. The system forms the sacrificial component with a feature that provides a resistive force to a shear force imposed by the spreading mechanism during the spreading. The system prints a part with the 3D printing system in a coupled arrangement with the sacrificial component. The coupled arrangement in combination with the resistive force is sufficient to immobilize each printed layer of the part to resist the shear force imposed by the spreading mechanism during spreading of the unbound powder above each printed layer of the part. After printing, and before or after post-processing, the part and sacrificial component are separated.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Alexander Nicholas LeGendre, Kelvin Wiebe