Patents by Inventor George Iliev

George Iliev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940311
    Abstract: A gas meter control system is adapted for use in gas meters having a plurality of different sizes (e.g., ability to measure different flowrates and/or different gas volumes per billing cycle) and different functional capabilities. In an example, the gas meter control system is configured to recognize and identify a metrology unit, sensor(s), switch(es), valve(s), valve motor(s), and/or other device(s) within a gas meter. Having identified devices present within a gas-environment and an air-environment of the meter, the control system selects and executes appropriate software to operate the identified devices. Addition of an additional component to the meter (e.g., an earthquake sensor or a tamper sensor) results in identification of the added component and execution of appropriate control software. Accordingly, the gas meter control system replaces a number of control systems configured to operate a single specific meter and/or configuration.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: March 26, 2024
    Assignee: ITRON GLOBAL SARL
    Inventor: George Iliev
  • Publication number: 20230041634
    Abstract: Cost effective pressure sensors for gas meters are described herein. In an example, responsive to an abnormal condition at an ultrasonic metrology unit of a gas meter, rates of pressure sensor operation are increased. In the example, the operations may include: measuring gas-environment pressure values; measuring contemporaneous air-environment pressure values; calculating pressure difference values of the gas-environment pressure values minus the contemporaneous air-environment pressure values; and comparing pressure difference values to one or more threshold values.
    Type: Application
    Filed: August 5, 2021
    Publication date: February 9, 2023
    Inventor: George Iliev
  • Publication number: 20230019356
    Abstract: A gas meter control system is adapted for use in gas meters having a plurality of different sizes (e.g., ability to measure different flowrates and/or different gas volumes per billing cycle) and different functional capabilities. In an example, the gas meter control system is configured to recognize and identify a metrology unit, sensor(s), switch(es), valve(s), valve motor(s), and/or other device(s) within a gas meter. Having identified devices present within a gas-environment and an air-environment of the meter, the control system selects and executes appropriate software to operate the identified devices. Addition of an additional component to the meter (e.g., an earthquake sensor or a tamper sensor) results in identification of the added component and execution of appropriate control software. Accordingly, the gas meter control system replaces a number of control systems configured to operate a single specific meter and/or configuration.
    Type: Application
    Filed: July 14, 2021
    Publication date: January 19, 2023
    Inventor: George Iliev
  • Patent number: 11181407
    Abstract: Techniques for the design and operation of an efficient battery-powered meter are described herein. A metrology unit of the meter may be at least partially located in the gas flow of a pipe, and measures gas flow rate data according to a static flow sensor. The metrology unit calculates raw gas-volume data using at least the flow rate data as input. The metrology unit measures gas temperature to produce gas temperature data, and adjusts the raw gas-volume data, based at least in part on the gas temperature data, to produce corrected gas-volume data. The metrology unit accumulates the corrected gas-volume data over multiple minutes, hours or even days, and then sends the accumulated corrected gas-volume data to an index unit of the meter. By accumulating the data over time, fewer data transmissions are required. The index unit may send the accumulated the accumulated corrected gas-volume data to a utility server.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 23, 2021
    Assignee: Itron, Inc.
    Inventor: George Iliev
  • Publication number: 20200355530
    Abstract: Techniques for the design and operation of an efficient battery-powered meter are described herein. A metrology unit of the meter may be at least partially located in the gas flow of a pipe, and measures gas flow rate data according to a static flow sensor. The metrology unit calculates raw gas-volume data using at least the flow rate data as input. The metrology unit measures gas temperature to produce gas temperature data, and adjusts the raw gas-volume data, based at least in part on the gas temperature data, to produce corrected gas-volume data. The metrology unit accumulates the corrected gas-volume data over multiple minutes, hours or even days, and then sends the accumulated corrected gas-volume data to an index unit of the meter. By accumulating the data over time, fewer data transmissions are required. The index unit may send the accumulated the accumulated corrected gas-volume data to a utility server.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 12, 2020
    Inventor: George Iliev
  • Patent number: 10663333
    Abstract: Techniques for the design and operation of an efficient battery-powered meter are described herein. A metrology unit of the meter may be at least partially located in the gas flow of a pipe, and measures gas flow rate data according to a static flow sensor. The metrology unit calculates raw gas-volume data using at least the flow rate data as input. The metrology unit measures gas temperature to produce gas temperature data, and adjusts the raw gas-volume data, based at least in part on the gas temperature data, to produce corrected gas-volume data. The metrology unit accumulates the corrected gas-volume data over multiple minutes, hours or even days, and then sends the accumulated corrected gas-volume data to an index unit of the meter. By accumulating the data over time, fewer data transmissions are required. The index unit may send the accumulated the accumulated corrected gas-volume data to a utility server.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 26, 2020
    Assignee: Itron, Inc.
    Inventor: George Iliev
  • Patent number: 10533882
    Abstract: Techniques for the design and operation of an efficient battery-powered meter are described herein. A metrology unit of the meter may be at least partially located in the gas flow of a pipe, and measures gas flow rate data according to a static flow sensor. The metrology unit calculates raw gas-volume data using at least the flow rate data as input. The metrology unit measures gas temperature to produce gas temperature data, and adjusts the raw gas-volume data, based at least in part on the gas temperature data, to produce corrected gas-volume data. The metrology unit accumulates the corrected gas-volume data over multiple minutes, hours or even days, and then sends the accumulated corrected gas-volume data to an index unit of the meter. By accumulating the data over time, fewer data transmissions are required. The index unit may send the accumulated the accumulated corrected gas-volume data to a utility server.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 14, 2020
    Assignee: Itron, Inc.
    Inventors: George Iliev, Kenneth Charles Rigdon, Johann de Jager
  • Publication number: 20180088599
    Abstract: Techniques for the design and operation of an efficient battery-powered meter are described herein. A metrology unit of the meter may be at least partially located in the gas flow of a pipe, and measures gas flow rate data according to a static flow sensor. The metrology unit calculates raw gas-volume data using at least the flow rate data as input. The metrology unit measures gas temperature to produce gas temperature data, and adjusts the raw gas-volume data, based at least in part on the gas temperature data, to produce corrected gas-volume data. The metrology unit accumulates the corrected gas-volume data over multiple minutes, hours or even days, and then sends the accumulated corrected gas-volume data to an index unit of the meter. By accumulating the data over time, fewer data transmissions are required. The index unit may send the accumulated the accumulated corrected gas-volume data to a utility server.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 29, 2018
    Inventor: George Iliev
  • Publication number: 20180087943
    Abstract: Techniques for the design and operation of an efficient battery-powered meter are described herein. A metrology unit of the meter may be at least partially located in the gas flow of a pipe, and measures gas flow rate data according to a static flow sensor. The metrology unit calculates raw gas-volume data using at least the flow rate data as input. The metrology unit measures gas temperature to produce gas temperature data, and adjusts the raw gas-volume data, based at least in part on the gas temperature data, to produce corrected gas-volume data. The metrology unit accumulates the corrected gas-volume data over multiple minutes, hours or even days, and then sends the accumulated corrected gas-volume data to an index unit of the meter. By accumulating the data over time, fewer data transmissions are required. The index unit may send the accumulated the accumulated corrected gas-volume data to a utility server.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 29, 2018
    Inventors: George Iliev, Kenneth Charles Rigdon, Johann de Jager