Patents by Inventor George Imthurn

George Imthurn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240388285
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Application
    Filed: April 19, 2024
    Publication date: November 21, 2024
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 12100740
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Grant
    Filed: July 12, 2023
    Date of Patent: September 24, 2024
    Assignee: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Patent number: 11967948
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 23, 2024
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20230369421
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Patent number: 11742396
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: August 29, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Publication number: 20220311432
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FIT performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 11362652
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: June 14, 2022
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20220059663
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Applicant: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Patent number: 11171215
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: November 9, 2021
    Assignee: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Publication number: 20210194478
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Application
    Filed: August 6, 2020
    Publication date: June 24, 2021
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 11011615
    Abstract: Various methods and devices that involve body contacted transistors are disclosed. An exemplary method comprises forming a gate on a planar surface of a semiconductor wafer. The gate covers a channel of a first conductivity type that is opposite to a second conductivity type. The method also comprises implanting a body dose of dopants on a source side of the gate using the gate to mask the body dose of dopants. The body dose of dopants spreads underneath the channel to form a deep well. The body dose of dopants has the first conductivity type. The method also comprises implanting, subsequent to implanting the body dose of dopants, a source dose of dopants on the source side of the gate to form a source. The method also comprises forming a source contact that is in contact with the deep well at the planar surface of the semiconductor wafer.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: May 18, 2021
    Assignee: Silanna Asia Pte Ltd
    Inventor: George Imthurn
  • Patent number: 10797172
    Abstract: A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: October 6, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Jie Deng, Alper Genc, Chieh-Kai Yang, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Mark L. Burgener, Robert B. Welstand
  • Patent number: 10797691
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: October 6, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 10797690
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: October 6, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 10790814
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: September 29, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 10790815
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: September 29, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 10784855
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 22, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20200295751
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Application
    Filed: April 20, 2020
    Publication date: September 17, 2020
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20200258988
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Applicant: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Patent number: 10680600
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 9, 2020
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Mark L. Burgener, Robert B. Welstand