Patents by Inventor George J. Brucker

George J. Brucker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7105831
    Abstract: An ionized alpha particle detector to directly measure alpha activity in ambient air that counts alpha pulses instead of measuring radon concentration is provided by an open-air ionization chamber, a means for collecting ions, a voltage source, a charging means and a means for recording alpha pulses. The ionized alpha particle detector allows the user to directly measure the alpha particle activity in ambient air and consequently, better assess the radiological public health risk from alpha particles emitted by inhaled air. The ionized alpha particle detector advantageously overcomes the difficulties in measuring alpha particles caused by oxygen ions that quickly attract electrons and form negative ions that compensate positive charged particles and prevent the formation of alpha particle pulses.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: September 12, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Eva Maria Kronenberg, legal representative, George J. Brucker, Stanley Kronenberg, deceased
  • Patent number: 6954512
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The flat embodiment of the neutron spectrometer is a chamber, a group of detectors each having an absorber layer, with each detector separated by gaps and arranged in an egg-crate-like structure within the chamber. Each absorber layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: October 11, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6928130
    Abstract: A neutron spectrometer for aircraft is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The preferred dodecahedron embodiment of the neutron spectrometer is a solid, polyethylene dodecahedron assembly with 12 surface facets covered by a solid-state detector stacked on an absorbing layer composed of tantalum. Each absorbing layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: August 9, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6765978
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The flat embodiment of the neutron spectrometer is a chamber, a group of detectors each having an absorber layer, with each detector separated by gaps and arranged in an egg-crate-like structure within the chamber. Each absorber layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 20, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6717999
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The preferred dodecahedron embodiment of the neutron spectrometer is a solid, polyethylene dodecahedron assembly with 12 surface facets covered by a solid-state detector stacked on an absorbing layer composed of titanium. Each absorbing layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 6, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6714616
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The flat embodiment of the neutron spectrometer is a chamber, a group of detectors each having an absorber layer, with each detector separated by gaps and arranged in an egg-crate-like structure within the chamber. Each absorber layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: March 30, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6678343
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The flat embodiment of the neutron spectrometer is a chamber, a group of detectors each having an absorber layer, with each detector separated by gaps and arranged in an egg-crate-like structure within the chamber. Each absorber layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: January 13, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6654434
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The flat embodiment of the neutron spectrometer is a chamber, a group of detectors each having an absorber layer, with each detector separated by gaps and arranged in an egg-crate-like structure within the chamber. Each absorber layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: November 25, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6654435
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The flat embodiment of the neutron spectrometer is a chamber, a group of detectors each having an absorber layer, with each detector separated by gaps and arranged in an egg-crate-like structure within the chamber. Each absorber layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: November 25, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6625243
    Abstract: A neutron spectrometer for aircraft is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The preferred dodecahedron embodiment of the neutron spectrometer is a solid, polyethylene dodecahedron assembly with 12 surface facets covered by a solid-state detector stacked on an absorbing layer composed of aluminum. Each absorbing layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: September 23, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6614867
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The preferred dodecahedron embodiment of the neutron spectrometer is a solid, polyethylene dodecahedron assembly with 12 surface facets covered by a solid-state detector stacked on an absorbing layer composed of titanium. Each absorbing layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: September 2, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6594332
    Abstract: A neutron spectrometer for spacecraft is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The preferred dodecahedron embodiment of the neutron spectrometer is a solid, polyethylene dodecahedron assembly with 12 surface facets covered by a solid-state detector stacked on an absorbing layer composed of aluminum. Each absorbing layer is constructed with a different thickness according to the minimum and maximum energies of neutrons in the spectrum.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: July 15, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6433335
    Abstract: A Geiger-Mueller triode directional sensor is provided to detect the direction of incident ionizing gamma radiation, comprising a housing divided into two subchambers, or GM counters, separated by a partition composed of a high Z layer of tungsten, the tungsten partition having an aperture for gas to freely communicate between the subchambers and maintain an identical gas mixture in both subchambers, radiation windows, external layers of a second material in the sidewall and a sensor. Incident gamma rays generate electrons within the tungsten partition, housing and the sidewall based on the photoelectric, Compton and pair effects. The electrons penetrate the radiation windows and are accelerated by an applied electric field in the housing, causing the electrons to ionize the gas within the housing and produce electrical discharges.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: August 13, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6349124
    Abstract: A neutron spectrometer is provided by a series of substrates covered by a solid-state detector stacked on an absorbing layer. As many as 12 substrates that convert neutrons to protons are covered by a layer of absorbing material, acting as a proton absorber, with the detector placed within the layer to count protons passing through the absorbing layer. By using 12 detectors the range of neutron energies are covered. The preferred dodecahedron embodiment of the neutron spectrometer comprises a solid, polyethylene dodecahedron assembly with 12 surface facets covered by a solid-state detector stacked on an absorbing layer. In this arrangement, each of 12 surface pentagon-shaped facets provides a polyethylene substrate to convert neutrons to protons, covered by a layer of absorbing material, acting as a proton absorber, with the detector stacked on the absorbing layer to count protons passing through the absorbing layer.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: February 19, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 6346709
    Abstract: A low cost and simple technique for measurement of radioactive contaminants in the air, soil, or in buildings is provided. The alpha, beta gamma radiation monitor comprises a thin window and two more removable radiation windows on top of a pancake-shaped conductive plastic chamber, with a microscope and a carbon fiber electrometer within the chamber protruding through the chamber's side wall, and the microscope and electrometer opposing each other. Within the chamber the microscope is optically focused on the electrometer fiber. Three radiation windows are provided: one admits alpha particles, beta particles and gamma radiation to the chamber, another admits beta particles and gamma radiation, and a third one admits only gamma radiation. Thus one can measure or observe alpha, beta, and gamma radiation, beta and gamma radiation, or only gamma radiation. The present invention's configuration allows the concentration of each type of radiation to be independently determined.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: February 12, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker, Steven A. Horne
  • Patent number: 6100530
    Abstract: An angular time-synchronized directional radiation sensor is provided to indicate the direction, or distribution of directions, of incident gamma radiation, and consequently, to locate sources of radioactivity emitting these photons. The angular time-synchronized directional radiation sensor comprises a rotating radiation sensing means, interacting with the incident radiation to produce light flashes, together with a stationary photomultiplier tube that converts the light flashes to electrical pulses that are counted by a data collection means. A synchronous motor enables the radiation sensing means to complete a 360.degree. scan within 1 second to reduce the time needed for measuring from hours to only a few minutes. The data collection means calculates an angle of rotation at a corresponding fraction of the 360.degree. scan to rapidly indicate the direction of a radiation source. In one embodiment, the data collection means is a computer. The radiation sensing means can be a scintillator assembly.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: August 8, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 5703370
    Abstract: A sensor from a carbon fiber, self-reading electrometer type of dosimeter made with a radically modified ionization chamber in order to determine the angular differential dose of ionizing radiation. The chamber is flat and its size is increased so that it is operable from intensities of 100 nGy(T) h.sup.-1 to 10.sup.4 Gy(T) h.sup.-1. This performance range can be accomplished by the addition of capacitors to reduce the dosimeter's basic sensitivity. The capacitors should be connected in parallel between the electrometer assembly and ground. Additionally, the ionization chamber is lined, or in effect "sandwiched," between a low atomic number "low Z" material and a high atomic number "high Z" material. In one embodiment, a hermetically sealed plastic housing is lined on one surface with a lead (Pb) plate and the remainder of the housing is painted on the inside except the side with the lead plate) with a carbon paint.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: December 30, 1997
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker
  • Patent number: 5665970
    Abstract: A radiation sensor and/or imager is formed by sandwiching two materials having different atomic numbers (Z) around a radiation detector, such as scintilator or Geiger-Mueller type radiation counters, or solid state radiation detectors, such as those made of silicon). In one embodiment of the present invention, a thin layer of lead (Pb) is placed on one side of a Geiger-Mueller radiation counter and a layer of Lucite.TM. is disposed on the opposite side. One example, of a preferred Geiger-Mueller counter which may be used in the present invention is a modified pancake Geiger-Mueller counter with thin ruby mica windows, approximately 2.8 mg/cm.sup.2 thick on both sides.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: September 9, 1997
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stanley Kronenberg, George J. Brucker