Patents by Inventor George J. Kluth

George J. Kluth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6689687
    Abstract: Sub-micron dimensioned, ultra-shallow junction MOS and/or CMOS transistor devices are formed by a salicide process wherein a blanket nickel layer is formed in contact with the exposed portions of the substrate surface adjacent the sidewall spacers, the top surface of the gate electrode, and the sidewall spacers. Embodiments include forming the blanket layer of nickel is formed by the sequential steps of: (i) forming a layer of nickel by sputtering with xenon gas; and, (ii) forming a layer of nickel by sputtering with argon gas. The two step process for forming the blanket layer of nickel advantageously prevents the formation of nickel silicide on the outer surfaces of the insulative sidewall spacers.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: February 10, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jacques J. J. Bertrand, George J. Kluth
  • Patent number: 6632740
    Abstract: Sub-micron dimensioned, ultra-shallow junction MOS and/or CMOS transistor devices are fomxed by a salicide process wherein a blanket nickel layer is formed in contact with the exposed portions of the substrate surface adjacent the sidewall spacers, the top surface of the gate electrode, and the sidewall spacers. Embodiments include forming the blanket layer of nickel is formed by the sequential steps of: (i) forming a layer of nickel by sputtering with nitrogen gas; and, (ii) forming a layer of nickel by sputtering with argon gas. The two step process for forming the blanket layer of nickel advantageously prevents the formation of nickel silicide on the outer surfaces of the insulative sidewall spacers.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: October 14, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jacques J. Bertrand, George J. Kluth
  • Patent number: 6627504
    Abstract: Bridging between nickel suicide layers on a gate electrode and source/drain regions along silicon nitride sidewall spacers is prevented by recessing the silicon nitride spacers and forming barrier spacers on top of the silicon nitride spacers. The barrier spacers prevent silicon migration and hence the formation of bridging silicide on the silicon nitride sidewall spacers.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: September 30, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jacques J. Bertrand, George J. Kluth
  • Patent number: 6602754
    Abstract: Bridging between silicide layers on a gate electrode and source/drain regions along silicon nitride sidewall spacers is prevented by implanting the exposed surfaces of the silicon nitride sidewall spacers with nitrogen to create a surface region having an increased nitrogen concentration. Embodiments include implanting the silicon nitride sidewall spacers with nitrogen such that the nitrogen concentration of the exposed surface is increased by about 5% to about 15%, thereby substantially preventing the formation of metal silicide on the sidewall spacers.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 5, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: George J. Kluth, Minh Van Ngo, Paul R. Besser
  • Patent number: 6562718
    Abstract: A method of forming a fully silicidized gate of a semiconductor device includes forming silicide in active regions and a portion of a gate. A shield layer is blanket deposited over the device. The top surface of the gate electrode is then exposed. A refractory metal layer is deposited and annealing is performed to cause the metal to react with the gate and fully silicidize the gate, with the shield layer protecting the active regions of the device from further silicidization to thereby prevent spiking and current leakage in the active regions.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 13, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Ercan Adem, Jacques J. Bertrand, Paul R. Besser, Matthew S. Buynoski, John C. Foster, Paul L. King, George J. Kluth, Minh V. Ngo, Eric N. Paton, Christy Mei-Chu Woo
  • Patent number: 6555453
    Abstract: Semiconductor devices having fully metal silicided gate electrodes, and methods for making the same, are disclosed. The devices have shallow S/D extensions with depths of less than about 500 Å. The methods for making the subject semiconductor devices employ diffusion of dopant from metal suicides to form shallow S/D extensions, followed by high energy implantation and activation, and metal silicidation to form S/D junctions having metal silicide connect regions and a fully metal silicided electrode.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Christy Mei-Chu Woo, George J. Kluth
  • Patent number: 6541866
    Abstract: Nickel silicidation of a gate electrode is controlled using a cobalt barrier layer. Embodiments include forming a gate electrode structure comprising a lower polycrystalline silicon layer, a layer of cobalt thereon and an upper polycrystalline silicon layer on the cobalt layer, depositing a layer of nickel and silicidizing, whereby the upper polycrystalline silicon layer is converted to nickel suicide and a cobalt silicide barrier layer is formed preventing nickel from reacting with the lower polycrystalline silicon layer.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: April 1, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jacques J. Bertrand, Christy Mei-Chu Woo, Minh Van Ngo, George J. Kluth
  • Patent number: 6486062
    Abstract: A nickel silicide layer is formed on a semiconductor device having a crystalline silicon source/drain region doped with arsenic. Arsenic is doped into the crystalline silicon, by implantation, for example, so that the concentration of arsenic is slightly below the surface of the silicon. Annealing restores the crystalline structure of the silicon after implantation of the arsenic. Amorphous silicon is selectively deposited over the source/drain regions and over the top of the gate electrode. Nickel is deposited over the entire semiconductor device and a second anneal reacts the nickel with the amorphous silicon. The second anneal is timed so that the nickel reacts with the amorphous silicon, and does not substantially react with the silicon source/drain regions containing arsenic. Preventing the nickel from substantially reacting with the silicon source/drain regions containing arsenic provides a smooth interface between the resulting nickel silicide and the silicon source/drain regions doped with arsenic.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: November 26, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: George J. Kluth, Matthew S. Buynoski
  • Patent number: 6391730
    Abstract: A process for fabricating shallow pocket regions in a non-volatile semiconductor device includes providing a semiconductor substrate having a principal surface. A masking pattern is formed to overlie the principal surface that includes an opening therein. An angled, molecular ion implantation process is carried out to form first and second shallow pocket regions in the semiconductor substrate. The first and second pocket regions at least partially underlie the first and second sidewalls, respectively, of the opening in the patterned layer. Further processing steps are then carried out to form a bit-line region in a non-volatile semiconductor device.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: May 21, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: George J. Kluth, Arvind Halliyal
  • Patent number: 6376341
    Abstract: A process for fabricating a memory cell, the process includes forming an ONO layer overlying a semiconductor substrate, depositing a masking layer overlying the ONO layer, patterning the masking layer into a resist mask, implanting the semiconductor substrate with a p-type dopant to create a p-type region, and laterally diffusing the p-type region. In one preferred embodiment, the lateral diffusing of the p-type region includes exposing the semiconductor substrate to a thermal cycle. Preferably, the thermal cycle is a rapid thermal anneal or a furnace anneal.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: April 23, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: George J. Kluth, Arvind Halliyal