Patents by Inventor George L. Coles, JR.

George L. Coles, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10842890
    Abstract: Example substances and methods relating to contrast agents are provided. An example method includes combining a surface active protein, a stabilizer, and a dispersion media to form a solution. The example method may further include aerating the solution in a gas to form a contrast agent comprising at least one microbubble formed from an interaction between the surface active protein and the stabilizer. A diameter of the at least one microbubble may be proportional to a pressure of an external environment of the contrast agent, such that measurement of the diameter may allow for measurement of the pressure.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: November 24, 2020
    Assignee: The Johns Hopkins University
    Inventors: Xiomara Calderon-Colon, George L. Coles, Jr.
  • Patent number: 10805745
    Abstract: A middle ear implant may include a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft configured to connect the first interface portion and the second interface portion, and a sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The sensor may be configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures. The sensor may also be configured to provide an AC signal output indicative of a frequency response of the implant in response to the sensor being coupled to an output device.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: October 13, 2020
    Assignee: The Johns Hopkins University
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, Jr., David A. Kitchin, Howard W. Francis, Ioan Lina
  • Patent number: 10721569
    Abstract: A middle ear implant includes a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft that connects the first and second interface portions, a carrier plate removably mounted in one of the first or second interface portions, and a removable sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The removable sensor is configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures, and provide an AC signal output indicative of a frequency response of the implant. The removable sensor is disposed at a portion of the carrier plate.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: July 21, 2020
    Assignee: The Johns Hopkins University
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, Jr., Howard W. Francis
  • Patent number: 10376682
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: August 13, 2019
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler
  • Publication number: 20190215626
    Abstract: A middle ear implant may include a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft configured to connect the first interface portion and the second interface portion, and a sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The sensor may be configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures. The sensor may also be configured to provide an AC signal output indicative of a frequency response of the implant in response to the sensor being coupled to an output device.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 11, 2019
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, JR., David A. Kitchin, Howard W. Francis, Ioan Lina
  • Patent number: 10277994
    Abstract: A middle ear implant may include a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft configured to connect the first interface portion and the second interface portion, and a sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The sensor may be configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures. The sensor may also be configured to provide an AC signal output indicative of a frequency response of the implant in response to the sensor being coupled to an output device.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: April 30, 2019
    Assignee: The Johns Hopkins University
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, Jr., David A. Kitchin, Howard W. Francis, Ioan Lina
  • Publication number: 20180367920
    Abstract: A middle ear implant includes a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft that connects the first and second interface portions, a carrier plate removably mounted in one of the first or second interface portions, and a removable sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The removable sensor is configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures, and provide an AC signal output indicative of a frequency response of the implant. The removable sensor is disposed at a portion of the carrier plate.
    Type: Application
    Filed: August 24, 2018
    Publication date: December 20, 2018
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, JR., Howard W. Francis
  • Patent number: 10091588
    Abstract: A middle ear implant includes a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft that connects the first and second interface portions, a carrier plate removably mounted in one of the first or second interface portions, and a removable sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The removable sensor is configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures, and provide an AC signal output indicative of a frequency response of the implant. The removable sensor is disposed at a portion of the carrier plate.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: October 2, 2018
    Assignee: The Johns Hopkins University
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, Jr., Howard W. Francis
  • Publication number: 20180169276
    Abstract: Example substances and methods relating to contrast agents are provided. An example method includes combining a surface active protein, a stabilizer, and a dispersion media to form a solution. The example method may further include aerating the solution in a gas to form a contrast agent comprising at least one microbubble formed from an interaction between the surface active protein and the stabilizer. A diameter of the at least one microbubble may be proportional to a pressure of an external environment of the contrast agent, such that measurement of the diameter may allow for measurement of the pressure.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 21, 2018
    Inventors: Xiomara Calderon Colon, George L. Coles, JR.
  • Patent number: 9993631
    Abstract: A ventriculoperitoneal shunt includes a proximal catheter, a distal catheter, a shunt valve operably coupling the proximal catheter to the distal catheter, and a contrast container containing contrast material configured to change acoustic impedance proportionally to a change in pressure applied to the contrast container.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: June 12, 2018
    Assignee: The Johns Hopkins University
    Inventors: George L. Coles, Jr., Sybil Klaus, Eric Jackson, Philippe M. Burlina, Richard S. Potember, Wayne I. Sternberger, John H. Benson, Benjamin Elder
  • Publication number: 20170311101
    Abstract: A middle ear implant may include a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft configured to connect the first interface portion and the second interface portion, and a sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The sensor may be configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures. The sensor may also be configured to provide an AC signal output indicative of a frequency response of the implant in response to the sensor being coupled to an output device.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, Jr., David A. Kitchin, Howard W. Francis, Ioan Lina
  • Patent number: 9743200
    Abstract: A middle ear implant may include a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft configured to connect the first interface portion and the second interface portion, and a sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The sensor may be configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures. The sensor may also be configured to provide an AC signal output indicative of a frequency response of the implant in response to the sensor being coupled to an output device.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 22, 2017
    Assignee: The Johns Hopkins University
    Inventors: Dawnielle Farrar, George L. Coles, Jr., David A. Kitchin, Howard W. Francis, Ioan Lina
  • Publication number: 20170215009
    Abstract: A middle ear implant includes a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft that connects the first and second interface portions, a carrier plate removably mounted in one of the first or second interface portions, and a removable sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The removable sensor is configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures, and provide an AC signal output indicative of a frequency response of the implant. The removable sensor is disposed at a portion of the carrier plate.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, JR., Howard W. Francis
  • Patent number: 9649065
    Abstract: A middle ear implant includes a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft that connects the first and second interface portions, a carrier plate removably mounted in one of the first or second interface portions, and a removable sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The removable sensor is configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures, and provide an AC signal output indicative of a frequency response of the implant. The removable sensor is disposed at a portion of the carrier plate.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: May 16, 2017
    Assignee: The Johns Hopkins University
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, Jr., Howard W. Francis
  • Publication number: 20170028181
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, JR., Jason J. Benkoski, Morgana M. Trexler
  • Patent number: 9504586
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: November 29, 2016
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler
  • Publication number: 20160081796
    Abstract: A middle ear implant includes a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft that connects the first and second interface portions, a carrier plate removably mounted in one of the first or second interface portions, and a removable sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The removable sensor is configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures, and provide an AC signal output indicative of a frequency response of the implant. The removable sensor is disposed at a portion of the carrier plate.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 24, 2016
    Inventors: Dawnielle Farrar-Gaines, George L. Coles, JR., Howard W. Francis
  • Publication number: 20160074638
    Abstract: A ventriculoperitoneal shunt includes a proximal catheter, a distal catheter, a shunt valve operably coupling the proximal catheter to the distal catheter, and a contrast container containing contrast material configured to change acoustic impedance proportionally to a change in pressure applied to the contrast container.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 17, 2016
    Inventors: George L. Coles, JR., Sybil Klaus, Eric Jackson, Philippe M. Burlina, Richard S. Potember, Wayne I. Sternberger, John H. Benson, Benjamin Elder
  • Publication number: 20140323798
    Abstract: A middle ear implant may include a first interface portion configured to interface with a first structure of a middle ear of a patient, a second interface portion configured to interface with a second structure of the middle ear of the patient, a shaft configured to connect the first interface portion and the second interface portion, and a sensor disposed at one end of the shaft, between the shaft and one of the first interface portion or the second interface portion. The sensor may be configured to provide a DC signal output indicative of static pressure on the sensor based on placement of the sensor between the first and second structures. The sensor may also be configured to provide an AC signal output indicative of a frequency response of the implant in response to the sensor being coupled to an output device.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Dawnielle Farrar, George L. Coles, JR., David A. Kitchin, Howard W. Francis, Ioan Lina
  • Patent number: 8696740
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: April 15, 2014
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Rosar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler