Patents by Inventor George L. Gould

George L. Gould has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9868843
    Abstract: The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: January 16, 2018
    Assignee: ASPEN AEROGELS, INC
    Inventors: Owen Richard Evans, Kathryn Elizabeth deKrafft, Nicholas Anthony Zafiropoulos, Wenting Dong, David J Mihalcik, George L Gould, Irene Melnikova
  • Publication number: 20170226307
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic. The aerogels provided herein are suitable for use in various applications, including but not limited to thermal and acoustic insulation, radiation shielding, and vibrational damping applications.
    Type: Application
    Filed: September 14, 2016
    Publication date: August 10, 2017
    Inventors: Je Kyun Lee, George L. Gould
  • Publication number: 20160375464
    Abstract: Embodiments of the present invention describe a method for continuous manufacture of a gel material comprising the steps of: forming a gel sheet by dispensing a gel precursor mixture onto a moving element; allowing gelation to occur to the gel precursor mixture; and cooling the formed gel with a cooling system, thereby reducing the rate of solvent evaporation therefrom.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: George L. Gould, Kevin A. Schmidt, Christopher L. Marlette, Shahrooz Zaghi
  • Patent number: 9476123
    Abstract: Embodiments of the present invention describe a method for continuous manufacture of a gel material comprising the steps of: forming a gel sheet by dispensing a gel precursor mixture onto a moving element at a rate effective to allow gelation to occur to the gel precursor mixture on the moving element; and cooling the formed gel thereby reducing the rate of solvent evaporation therefrom.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: October 25, 2016
    Assignee: ASPEN AEROGELS, INC.
    Inventors: George L. Gould, Kevin A. Schmidt, Christopher L. Marlette, Shahrooz Zaghi
  • Patent number: 9469739
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic. The aerogels provided herein are suitable for use in various applications, including but not limited to thermal and acoustic insulation, radiation shielding, and vibrational damping applications.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: October 18, 2016
    Assignee: ASPEN AEROGELS, INC.
    Inventors: Je Kyun Lee, George L Gould
  • Publication number: 20160272777
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic. The aerogels provided herein are suitable for use in various applications, including but not limited to thermal and acoustic insulation, radiation shielding, and vibrational damping applications.
    Type: Application
    Filed: November 21, 2014
    Publication date: September 22, 2016
    Inventors: Je Kyun Lee, George L Gould
  • Publication number: 20160096949
    Abstract: The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 7, 2016
    Inventors: Owen Richard Evans, Kathryn Elizabeth deKrafft, Nicholas Anthony Zafiropoulos, Wenting Dong, David J. Mihalcik, George L. Gould, Irene Melnikova
  • Publication number: 20150145106
    Abstract: Materials and methods for manufacturing electronic devices and semiconductor components using low dielectric materials comprising polyimide based aerogels are described. Additional methods for manipulating the properties of the dielectric materials and affecting the overall dielectric property of the system are also provided.
    Type: Application
    Filed: December 16, 2014
    Publication date: May 28, 2015
    Inventors: Nicholas Anthony Zafiropoulos, Paul Nahass, Roxana Trifu, Redouane Begag, Wendell E. Rhine, Wenting Dong, Shannon Olga White, George L. Gould, Alaric Naiman, Roger Sinta
  • Patent number: 8945677
    Abstract: Materials and methods for manufacturing electronic devices and semiconductor components using low dielectric materials comprising polyimide based aerogels are described. Additional methods for manipulating the properties of the dielectric materials and affecting the overall dielectric property of the system are also provided.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: February 3, 2015
    Assignee: Aspen Aerogels, Inc.
    Inventors: Nicholas A. Zafiropoulos, Paul Nahass, Roxana Trifu, Redouane Begag, Wendell E. Rhine, Wenting Dong, Shannon White, George L. Gould, Alaric Naiman, Roger Sinta
  • Patent number: 8921436
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer 5 via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable 10 thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: December 30, 2014
    Assignee: Aspen Aerogels, Inc.
    Inventors: Je Kyun Lee, George L Gould
  • Publication number: 20140080932
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer 5 via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable 10 thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic.
    Type: Application
    Filed: May 16, 2013
    Publication date: March 20, 2014
    Applicant: ASPEN AEROGELS, INC.
    Inventors: Je Kyun Lee, George L. Gould
  • Patent number: 8461223
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic. The aerogels provided herein are suitable for use in various applications, including but not limited to thermal and acoustic insulation, radiation shielding, and vibrational damping applications.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: June 11, 2013
    Assignee: Aspen Aerogels, Inc.
    Inventors: Je Kyun Lee, George L. Gould
  • Publication number: 20120189782
    Abstract: Materials and methods for manufacturing electronic devices and semiconductor components using low dielectric materials comprising polyimide based aerogels are described. Additional methods for manipulating the properties of the dielectric materials and affecting the overall dielectric property of the system are also provided.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 26, 2012
    Applicant: Aspen Aerogels, Inc.
    Inventors: Nicholas A Zafiropoulos, Paul Nahass, Roxana Trifu, Redouane Begag, Wendell E Rhine, Wenting Dong, Shannon White, George L Gould, Alaric Naiman, Roger Sinta
  • Publication number: 20110171389
    Abstract: Embodiments of the present invention describe a method for continuous manufacture of a gel material comprising the steps of: forming a gel sheet by dispensing a gel precursor mixture onto a moving element at a rate effective to allow gelation to occur to the gel precursor mixture on the moving element; and cooling the formed gel thereby reducing the rate of solvent evaporation therefrom.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 14, 2011
    Applicant: ASPEN AEROGELS, INC.
    Inventors: Shahrooz Zaghi, George L. Gould, Kevin A. Schmidt, Christopher L. Marlette
  • Patent number: 7780890
    Abstract: The present invention provides various methods for producing gel sheets in a continuous fashion. The embodiments of the present invention help reduce the time of producing gel sheets that is suitable for industrial manufacturing. Such gel sheets are used in manufacturing aerogel blankets used in a variety of applications including thermal and acoustic insulation.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: August 24, 2010
    Assignee: Aspen Aerogels, Inc.
    Inventors: Kang P Lee, George L Gould, William Gronemeyer, Christopher John Stepanian
  • Publication number: 20100155644
    Abstract: The invention provides reinforced aerogel monoliths as well as fiber reinforced composites thereof for a variety of uses. Compositions and methods of preparing the monoliths and composites are also provided.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Applicant: ASPEN AEROGELS, INC.
    Inventors: Duan Li Ou, George L. Gould
  • Patent number: 7691912
    Abstract: The invention provides reinforced aerogel monoliths as well as fiber reinforced composites thereof for a variety of uses. Compositions and methods of preparing the monoliths and composites are also provided.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: April 6, 2010
    Assignee: Aspen Aerogels, Inc.
    Inventors: Duan Li Ou, George L. Gould
  • Publication number: 20090229032
    Abstract: Aerogel composite materials having a lofty fibrous batting reinforcement preferably in combination with one or both of individual short randomly oriented microfibers and conductive layers exhibit improved performance in one or all of flexibility, drape, durability, resistance to sintering, x-y thermal conductivity, x-y electrical conductivity, RFI-EMI attenuation, and/or burn-through resistance.
    Type: Application
    Filed: February 4, 2009
    Publication date: September 17, 2009
    Applicant: Aspen Aerogels, Inc.
    Inventors: Christopher J. Stepanian, George L. Gould, Redouane Begag
  • Patent number: 7560062
    Abstract: This invention discloses improvements that can be achieved in thermal or mechanical performance of aerogel composites via densification. Densified aerogels and aerogel composites can display higher compressive strength, modulus, flexural strength, and maintains or insubstantially increases the thermal conductivity relative to the pre-densified form. In the special case of fiber reinforced aerogel composites densification via mechanical compression can prove highly beneficial.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: July 14, 2009
    Assignee: Aspen Aerogels, Inc.
    Inventors: George L. Gould, Je Kyun Lee, Christopher J. Stepanian, Kang P. Lee
  • Patent number: 7504346
    Abstract: Aerogel composite materials having a lofty fibrous batting reinforcement preferably in combination with one or both of individual short randomly oriented microfibers and conductive layers exhibit improved performance in one or all of flexibility, drape, durability, resistance to sintering, x-y thermal conductivity, x-y electrical conductivity, RFI-EMI attenuation, and/or burn-through resistance.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: March 17, 2009
    Assignee: Aspen Aerogels, Inc.
    Inventors: Christopher J. Stepanian, George L. Gould, Redouane Begag