Patents by Inventor George M. Gammel

George M. Gammel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230386785
    Abstract: Provided herein are approaches for optimizing a full horizontal scanned beam distance of an accelerator beam. In one approach, a method may include positioning a first Faraday cup along a first side of an intended beam-scan area, positioning a second Faraday cup along a second side of the intended beam-scan area, scanning an ion beam along the first and second sides of the intended beam-scan area, measuring a first beam current of the ion beam at the first Faraday cup and measuring a second beam current of the ion beam at the second Faraday cup, and determining an optimal scan distance of the ion beam across the intended beam-scan area based on the first beam current and the second beam current.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Tyler Wills, George M. Gammel, Eric Donald Wilson, Jay T. Scheuer, Xiangdong He, Shardul Patel, Robert C. Lindberg
  • Publication number: 20230057995
    Abstract: A method includes receiving a spot beam profile is received for a spot ion beam; receiving a linear scanned beam profile for the spot ion beam; generating a calculated calibration spot profile, based upon the spot beam profile and the linear scanned beam profile; and implementing an adjusted scanned profile for the spot ion beam, based upon the calculated calibration spot profile.
    Type: Application
    Filed: March 21, 2022
    Publication date: February 23, 2023
    Applicant: Applied Materials, Inc.
    Inventors: George M. Gammel, Eric Donald Wilson
  • Publication number: 20200027698
    Abstract: An apparatus for monitoring of an ion beam. The apparatus may include a processor; and a memory unit coupled to the processor, including a display routine, where the display routine operative on the processor to manage monitoring of the ion beam. The display routine may include a measurement processor to receive a plurality of spot beam profiles of the ion beam, the spot beam profiles collected during a fast scan of the ion beam and a slow mechanical scan of a detector, conducted simultaneously with the fast scan. The fast scan may comprise a plurality of scan cycles having a frequency of 10 Hz or greater along a fast scan direction, and the slow mechanical scan being performed in a direction parallel to the fast scan direction. The measurement processor may also send a display signal to display at least one set of information, derived from the plurality of spot beam profiles.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric D. Wilson, George M. Gammel, Sruthi Chennadi, Daniel Tieger, Shane Conley
  • Patent number: 10431421
    Abstract: An apparatus for monitoring of an ion beam. The apparatus may include a processor; and a memory unit coupled to the processor, including a display routine, where the display routine operative on the processor to manage monitoring of the ion beam. The display routine may include a measurement processor to receive a plurality of spot beam profiles of the ion beam, the spot beam profiles collected during a fast scan of the ion beam and a slow mechanical scan of a detector, conducted simultaneously with the fast scan. The fast scan may comprise a plurality of scan cycles having a frequency of 10 Hz or greater along a fast scan direction, and the slow mechanical scan being performed in a direction parallel to the fast scan direction. The measurement processor may also send a display signal to display at least one set of information, derived from the plurality of spot beam profiles.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: October 1, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC
    Inventors: Eric D. Wilson, George M. Gammel, Sruthi Chennadi, Daniel Tieger, Shane Conley
  • Publication number: 20190139740
    Abstract: An apparatus for monitoring of an ion beam. The apparatus may include a processor; and a memory unit coupled to the processor, including a display routine, where the display routine operative on the processor to manage monitoring of the ion beam. The display routine may include a measurement processor to receive a plurality of spot beam profiles of the ion beam, the spot beam profiles collected during a fast scan of the ion beam and a slow mechanical scan of a detector, conducted simultaneously with the fast scan. The fast scan may comprise a plurality of scan cycles having a frequency of 10 Hz or greater along a fast scan direction, and the slow mechanical scan being performed in a direction parallel to the fast scan direction. The measurement processor may also send a display signal to display at least one set of information, derived from the plurality of spot beam profiles.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 9, 2019
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric D. Wilson, George M. Gammel, Sruthi Chennadi, Daniel Tieger, Shane Conley
  • Patent number: 9738968
    Abstract: An apparatus includes a beam scanner applying, during a non-uniform scanning mode, a plurality of different waveforms generating a scan of an ion beam along a scan direction, wherein a given waveform comprises a plurality of scan segments, wherein a first scan segment comprises a first scan rate and a second scan segment comprises a second scan rate different from the first scan rate; a current detector intercepting the ion beam outside of a substrate region and recording a measured integrated current of the ion beam for a given waveform; and a scan adjustment component coupled to the beam scanner and comprising logic to determine: when a beam width of the ion beam along the scan direction exceeds a threshold; and a plurality of current ratios based on the measured integrated current of the ion beam for at least two different waveforms of the plurality of waveforms.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: August 22, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: George M. Gammel, Morgan D. Evans, Stanislav S. Todorov, Norman E. Hussey, Gregory R. Gibilaro
  • Publication number: 20160312357
    Abstract: An apparatus includes a beam scanner applying, during a non-uniform scanning mode, a plurality of different waveforms generating a scan of an ion beam along a scan direction, wherein a given waveform comprises a plurality of scan segments, wherein a first scan segment comprises a first scan rate and a second scan segment comprises a second scan rate different from the first scan rate; a current detector intercepting the ion beam outside of a substrate region and recording a measured integrated current of the ion beam for a given waveform; and a scan adjustment component coupled to the beam scanner and comprising logic to determine: when a beam width of the ion beam along the scan direction exceeds a threshold; and a plurality of current ratios based on the measured integrated current of the ion beam for at least two different waveforms of the plurality of waveforms.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 27, 2016
    Inventors: George M. Gammel, Morgan D. Evans, Stanislav S. Todorov, Norman E. Hussey, Gregory R. Gibilaro
  • Patent number: 9062377
    Abstract: Methods of reducing glitch rates within an ion implanter are described. In one embodiment, a plasma-assisted conditioning is performed, wherein the bias voltage to the extraction electrodes is modified so as to inhibit the formation of an ion beam. The power supplied to the plasma generator in the ion source is increased, thereby creating a high density plasma, which is not extracted by the extraction electrodes. This plasma extends from the ion source chamber through the extraction aperture. Energetic ions then condition the extraction electrodes. In another embodiment, a plasma-assisted cleaning is performed. In this mode, the extraction electrodes are moved further from the ion source chamber, and a different source gas is used to create the plasma. In some embodiments, a combination of these modes is used to reduce glitches in the ion implanter.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: June 23, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: William T. Levay, George M. Gammel, Bon-Woong Koo, Brant S. Binns, Richard M. White
  • Patent number: 9006692
    Abstract: A system to control an ion beam in an ion implanter includes a detector to perform a plurality of beam current measurements of the ion beam along a first direction perpendicular to a direction of propagation of the ion beam. The system also includes an analysis component to determine a beam current profile based upon the plurality of beam current measurements, the beam current profile comprising a variation of beam current along the first direction; and an adjustment component to adjust a height of the ion beam along the first direction when the beam current profile indicates the beam height is below a threshold.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 14, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanislav S. Todorov, George M. Gammel, Richard Allen Sprenkle, Norman E. Hussey, Frank Sinclair, Shengwu Chang, Joseph C. Olson, David Roger Timberlake, Kurt T. Decker-Lucke
  • Publication number: 20140326179
    Abstract: A system to control an ion beam in an ion implanter includes a detector to perform a plurality of beam current measurements of the ion beam along a first direction perpendicular to a direction of propagation of the ion beam. The system also includes an analysis component to determine a beam current profile based upon the plurality of beam current measurements, the beam current profile comprising a variation of beam current along the first direction; and an adjustment component to adjust a height of the ion beam along the first direction when the beam current profile indicates the beam height is below a threshold.
    Type: Application
    Filed: September 25, 2013
    Publication date: November 6, 2014
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanislav S. Todorov, George M. Gammel, Richard Allen Sprenkle, Norman E. Hussey, Frank Sinclair, Shengwu Chang, Joseph C. Olson, David Roger Timberlake, Kurt T. Decker-Lucke
  • Patent number: 8853653
    Abstract: A system to control an ion beam in an ion implanter includes a detector system to detect a plurality of beam current measurements of the ion beam at a first frequency and an analysis component to determine a variation of the ion beam based upon the plurality of beam current measurements, the variation corresponding to a beam current variation of the ion beam at a second frequency different from the first frequency. The system also includes an adjustment component to adjust the ion beam in response to an output of the analysis component to reduce the variation, wherein the analysis component and the adjustment component are configured to dynamically reduce the variation of the ion beam below a threshold value while the ion beam is generated in the ion implanter.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 7, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanislav S. Todorov, George M. Gammel, Richard Allen Sprenkle, Norman E. Hussey, Frank Sinclair, Shengwu Chang, Joseph C. Olson, David Roger Timberlake, Kurt T. Decker-Lucke
  • Publication number: 20140127394
    Abstract: Methods of reducing glitch rates within an ion implanter are described. In one embodiment, a plasma-assisted conditioning is performed, wherein the bias voltage to the extraction electrodes is modified so as to inhibit the formation of an ion beam. The power supplied to the plasma generator in the ion source is increased, thereby creating a high density plasma, which is not extracted by the extraction electrodes. This plasma extends from the arc chamber through the extraction aperture. Energetic ions then condition the extraction electrodes. In another embodiment, a plasma-assisted cleaning is performed. In this mode, the extraction voltage applied to the arc chamber body is modulated between two voltages so as to clean both the extraction electrodes and the faceplate of the arc chamber body.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 8, 2014
    Inventors: George M. Gammel, Brant S. Binns, Piotr R. Lubicki, Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Publication number: 20140099430
    Abstract: Methods of reducing glitch rates within an ion implanter are described. In one embodiment, a plasma-assisted conditioning is performed, wherein the bias voltage to the extraction electrodes is modified so as to inhibit the formation of an ion beam. The power supplied to the plasma generator in the ion source is increased, thereby creating a high density plasma, which is not extracted by the extraction electrodes. This plasma extends from the ion source chamber through the extraction aperture. Energetic ions then condition the extraction electrodes. In another embodiment, a plasma-assisted cleaning is performed. In this mode, the extraction electrodes are moved further from the ion source chamber, and a different source gas is used to create the plasma. In some embodiments, a combination of these modes is used to reduce glitches in the ion implanter.
    Type: Application
    Filed: September 23, 2013
    Publication date: April 10, 2014
    Inventors: William T. Levay, George M. Gammel, Bon-Woong Koo, Brant S. Binns, Richard M. White
  • Publication number: 20120021136
    Abstract: A plasma process uniformity control apparatus comprises a plasma chamber defined by chamber walls and a plurality of magnetic elements disposed on the outside of the chamber walls. Each of the plurality of magnets is configured to supply a magnetic field directed at respective portions of the plasma inside the chamber to control the uniformity of the plasma directed toward the target substrate.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Joseph P. Dzengeleski, George M. Gammel, Timothy J. Miller
  • Publication number: 20100159120
    Abstract: An ion uniformity monitoring device is positioned within a plasma process chamber and includes a plurality of sensors located above and a distance away from a workpiece within the chamber. The sensors are configured to detect the number of secondary electrons emitted from a surface of the workpiece exposed to a plasma process. Each sensor outputs a current signal proportional to the detected secondary electrons. A current comparator circuit outputs a processed signal resulting from each of the plurality of current signals. The detection of the secondary electrons emitted from the workpiece during plasma processing is indicative of the uniformity characteristic across the surface of the workpiece and may be performed in situ and during on-line plasma processing.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Joseph P. Dzengeleski, George M. Gammel, Bernard G. Lindsay, Vikram Singh
  • Patent number: 7663125
    Abstract: An ion beam current uniformity monitor, ion implanter and related method are disclosed. In one embodiment, the ion beam current uniformity monitor includes an ion beam current measurer including a plurality of measuring devices for measuring a current of an ion beam at a plurality of locations; and a controller for maintaining ion beam current uniformity based on the ion beam current measurements by the ion beam current measurer.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: February 16, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: William G. Callahan, Morgan D. Evans, George M. Gammel, Norman E. Hussey, Gregg A. Norris, Joseph C. Olson
  • Patent number: 7476877
    Abstract: A charge monitoring system may include a platen having a surface configured to accept a wafer thereon, and a charge monitor disposed relative to the platen so that an ion beam simultaneously strikes a portion of the charge monitor and a portion of the wafer. The charge monitor is configured to provide a charge monitor signal representative of a charge on a surface of the wafer when the ion beam simultaneously strikes the portion of the charge monitor and the portion of the wafer. The charge monitor signal may depend, at least in part, on a beam potential of the ion beam.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: January 13, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, George M. Gammel, Peter F. Kurunczi, Eric Cobb
  • Publication number: 20080073584
    Abstract: An ion beam current uniformity monitor, ion implanter and related method are disclosed. In one embodiment, the ion beam current uniformity monitor includes an ion beam current measurer including a plurality of measuring devices for measuring a current of an ion beam at a plurality of locations; and a controller for maintaining ion beam current uniformity based on the ion beam current measurements by the ion beam current measurer.
    Type: Application
    Filed: March 29, 2007
    Publication date: March 27, 2008
    Inventors: William G. Callahan, Morgan D. Evans, George M. Gammel, Norman E. Hussey, Gregg A. Norris, Joseph C. Olson
  • Patent number: 6528804
    Abstract: An ion implanter for low energy ion implantation includes an ion beam generator, a older for supporting a workpiece, such as a semiconductor wafer, and a voltage source electrically connected to the workpiece. The ion beam generator includes an ion source for generating ions and an extraction electrode having an extraction voltage applied thereto for accelerating the ions to form an ion beam. The voltage source applies to the workpiece a bias voltage that is of opposite polarity and smaller magnitude than the extraction voltage. The ions in the ion beam are implanted in the workpiece with an energy that is a function of the difference between the extraction voltage and the bias voltage.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: March 4, 2003
    Assignee: Varian Semiconductor Equipment Associate, Inc.
    Inventors: Philip Sullivan, George M. Gammel, Damian F. Brennan
  • Patent number: 5153430
    Abstract: A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: October 6, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George M. Gammel, Henry W. Kugel