Patents by Inventor George Pax

George Pax has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090141564
    Abstract: Apparatus, systems, and methods are disclosed that operate to encode register bits to generate encoded bits such that, for pairs of addresses, an encoded bit to be coupled to a first address in a memory device may be exchanged with an encoded bit to be coupled to a second address in the memory device. Apparatus, systems, and methods are disclosed that operate to invert encoded bits in logic circuits in the memory device if original bits were inverted. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Applicant: Micron Technology, Inc.
    Inventor: George Pax
  • Publication number: 20080048835
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 29, 2007
    Publication date: February 28, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080048832
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 28, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080036492
    Abstract: A registered memory module includes several memory devices coupled to a register through a plurality of transmission lines forming a symmetrical tree topology. The tree includes several branches each of which includes two transmission lines coupled only at its ends to either another transmission line or one of the memory devices. The branches are arranged in several layers of hierarchy, with the transmission lines in branches having the same hierarchy having the same length. Each transmission line preferably has a characteristic impedance that is half the characteristic impedance of any pair of downstream transmission lines to which it is coupled to provide impedance matching. A dedicated transmission line is used to couple an additional memory device, which may or may not be an error checking memory device, to the register.
    Type: Application
    Filed: October 9, 2007
    Publication date: February 14, 2008
    Applicant: Micron Technology, Inc.
    Inventors: George Pax, Roy Greeff
  • Publication number: 20080030306
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 7, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080030353
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 29, 2007
    Publication date: February 7, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20070293209
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20070139164
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: November 28, 2006
    Publication date: June 21, 2007
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, Shu-Sun Yu, David Ovard, Robert Rotzoll
  • Publication number: 20070099443
    Abstract: Memory modules and methods for manufacturing memory modules are disclosed herein. In one embodiment, a memory module includes a substrate, a microelectronic device carried by the substrate, and a plurality of external contact pads operably coupled to the microelectronic device. The substrate includes a first major surface with a first longitudinal edge and a second longitudinal edge. The external contact pads are disposed on the first major surface proximate to the second longitudinal edge. The contact pads include a first contact pad with a first end proximate to the second longitudinal edge and a second contact pad with a second end proximate to the second longitudinal edge. The first end is spaced apart from the first longitudinal edge by a first distance, and the second end is spaced apart from the first longitudinal edge by a second distance different than the first distance.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 3, 2007
    Applicant: Micron Technology, Inc.
    Inventor: George Pax
  • Publication number: 20060203938
    Abstract: A method and system for generating a reference voltage for memory device signal receivers operates in either a calibration mode or a normal operating mode. In the calibration mode, the magnitude of the reference voltage is incrementally varied, and a digital signal pattern is coupled to the receiver at each reference voltage. An output of the receiver is analyzed to determine if the receiver can accurately pass the signal pattern at each reference voltage level. A range of reference voltages that allow the receiver to accurately pass the signal pattern is recorded, and a final reference voltage is calculated at the approximate midpoint of the range. This final reference voltage is applied to the receiver during normal operation.
    Type: Application
    Filed: May 11, 2006
    Publication date: September 14, 2006
    Inventors: Brent Keeth, Joo Choi, George Pax, Ronnie Harrison, David Ovard, Dragos Dimitriu, Troy Manning, Roy Greeff, Greg King, Brian Johnson
  • Publication number: 20060082445
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: November 29, 2005
    Publication date: April 20, 2006
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, Shu-Sun Yu, David Ovard, Robert Rotzoll
  • Publication number: 20060045206
    Abstract: A method and system for generating a reference voltage for memory device signal receivers operates in either a calibration mode or a normal operating mode. In the calibration mode, the magnitude of the reference voltage is incrementally varied, and a digital signal pattern is coupled to the receiver at each reference voltage. An output of the receiver is analyzed to determine if the receiver can accurately pass the signal pattern at each reference voltage level. A range of reference voltages that allow the receiver to accurately pass the signal pattern is recorded, and a final reference voltage is calculated at the approximate midpoint of the range. This final reference voltage is applied to the receiver during normal operation.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Inventors: Brent Keeth, Joo Choi, George Pax, Ronnie Harrison, David Ovard, Dragos Dimitriu, Troy Manning, Roy Greeff, Greg King, Brian Johnson
  • Publication number: 20060042821
    Abstract: Memory modules and methods for manufacturing memory modules are disclosed herein. In one embodiment, a memory module includes a substrate, a microelectronic device carried by the substrate, and a plurality of external contact pads operably coupled to the microelectronic device. The substrate includes a first major surface with a first longitudinal edge and a second longitudinal edge. The external contact pads are disposed on the first major surface proximate to the second longitudinal edge. The contact pads include a first contact pad with a first end proximate to the second longitudinal edge and a second contact pad with a second end proximate to the second longitudinal edge. The first end is spaced apart from the first longitudinal edge by a first distance, and the second end is spaced apart from the first longitudinal edge by a second distance different than the first distance.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 2, 2006
    Inventor: George Pax
  • Publication number: 20060028904
    Abstract: A registered memory module includes a plurality of flip-flops having respective data terminals, respective clock terminals receiving a clock signal and output terminals coupled to a plurality of SDRAM devices in the module. A logic gate decodes respective chip select signals for selecting the SDRAM devices. The logic gate generates an enable signal if a memory access is being directed to any of the SDRAM devices in the module. In one embodiment, the flip-flops include an enable input coupled to receive the enable signal from the logic gate. In another embodiment, the input signals are coupled to the data inputs of the flip-flops through logic gates that are selectively enabled by the enable signal from the logic gate. As a result, the input signals are not latched by transitions of the clock signal when a memory access is not directed to any of the SDRAM devices in the module.
    Type: Application
    Filed: August 12, 2005
    Publication date: February 9, 2006
    Inventor: George Pax
  • Publication number: 20060023528
    Abstract: A registered memory module includes several memory devices coupled to a register through a plurality of transmission lines forming a symmetrical tree topology. The tree includes several branches each of which includes two transmission lines coupled only at its ends to either another transmission line or one of the memory devices. The branches are arranged in several layers of hierarchy, with the transmission lines in branches having the same hierarchy having the same length. Each transmission line preferably has a characteristic impedance that is half the characteristic impedance of any pair of downstream transmission lines to which it is coupled to provide impedance matching. A dedicated transmission line is used to couple an additional memory device, which may or may not be an error checking memory device, to the register.
    Type: Application
    Filed: September 28, 2005
    Publication date: February 2, 2006
    Inventors: George Pax, Roy Greeff
  • Publication number: 20050172069
    Abstract: A computer system provides improved routability for memory modules. Chips are placed on the back side of the module directly behind the chips on the front side, and vias connects destination pins on the front side to the back side. Internal assignments are routed to the pins so as to be bilaterally symmetrical. These functions can include any of the pins used on the memory chip, including the address bus and the command bus. The bit positions of the internal assignments routed to pins connected together need not be identical. Where bit positions are coupled together, a remap multiplexer is used to perform rerouting of logical information onto different physical bus lines. The remap multiplexer may be implemented in the system BIOS, in the memory controller, or alternatively on the memory module. Further, the rerouting may be accomplished through any combination of hardware or software.
    Type: Application
    Filed: March 28, 2005
    Publication date: August 4, 2005
    Inventor: George Pax
  • Publication number: 20050088314
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: July 24, 2003
    Publication date: April 28, 2005
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, Shu-Sun Yu, David Ovard, Robert Rotzoll
  • Publication number: 20050030797
    Abstract: A registered memory module includes several memory devices coupled to a register through a plurality of transmission lines forming a symmetrical tree topology. The tree includes several branches each of which includes two transmission lines coupled only at its ends to either another transmission line or one of the memory devices. The branches are arranged in several layers of hierarchy, with the transmission lines in branches having the same hierarchy having the same length. Each transmission line preferably has a characteristic impedance that is half the characteristic impedance of any pair of downstream transmission lines to which it is coupled to provide impedance matching. A dedicated transmission line is used to couple an additional memory device, which may or may not be an error checking memory device, to the register.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 10, 2005
    Inventors: George Pax, Roy Greeff
  • Patent number: 6646945
    Abstract: A plug-in module, e.g., a memory module, for a bus system is disclosed. Each module includes a filter for filtering a reference voltage signal line, with the modules being arranged such that each of the filters in successive modules are cascaded.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: November 11, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Terry R. Lee, George Pax