Patents by Inventor George Reimer

George Reimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9771661
    Abstract: Methods for producing a high temperature oxidation and hot corrosion resistant MCrAlX coating on a superalloy substrate include applying an M-metal, chromium, and aluminum or an aluminum alloy comprising a reactive element to at least one surface of the superalloy component by electroplating at electroplating conditions below 100° C. in a plating bath thereby forming a plated component and heat treating the plated component.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: September 26, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: James Piascik, Derek Raybould, Vincent Chung, George Reimer, Lee Poandl
  • Patent number: 9120151
    Abstract: Substantially defect-free titanium aluminide components and methods are provided for manufacturing the same from articles formed by consolidation processes. The method includes providing an intermediate article comprised of a titanium aluminide alloy and formed by a consolidation process. The intermediate article is encapsulated with an aluminum-containing encapsulation layer. The intermediate article is compacted after the encapsulation step. A substantially defect-free titanium aluminide component comprises a compacted three-dimensional article comprised of titanium aluminide and formed by a consolidation process and an aluminum-containing encapsulation layer on at least one surface of the compacted three-dimensional article. The aluminum-containing encapsulation layer comprises an aluminide material, MCrAlY wherein M is cobalt, nickel, or a combination of cobalt and nickel, or TiAlCr.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 1, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Mark C. Morris, George Reimer, William F. Hehmann, Daira Legzdina, Richard Fox, Yiping Hu, Harry Lester Kington
  • Patent number: 8778164
    Abstract: Methods for producing a high temperature oxidation resistant coating on a superalloy component and the coated superalloy component produced thereby are provided. Aluminum or an aluminum alloy is applied to at least one surface of the superalloy component by electroplating in an ionic liquid aluminum plating bath to form a plated component. The plated component is heat treated at a first temperature of about 600° C. to about 650° C. and then further heat treated at a second temperature of about 700° C. to about 1050° C. for about 0.50 hours to about two hours or at a second temperature of about 750° C. to about 900° C. for about 12 to about 20 hours.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 15, 2014
    Assignee: Honeywell International Inc.
    Inventors: James Piascik, Derek Raybould, George Reimer
  • Publication number: 20140037983
    Abstract: Substantially defect-free titanium aluminide components and methods are provided for manufacturing the same from articles formed by consolidation processes. The method includes providing an intermediate article comprised of a titanium aluminide alloy and formed by a consolidation process. The intermediate article is encapsulated with an aluminum-containing encapsulation layer. The intermediate article is compacted after the encapsulation step. A substantially defect-free titanium aluminide component comprises a compacted three-dimensional article comprised of titanium aluminide and formed by a consolidation process and an aluminum-containing encapsulation layer on at least one surface of the compacted three-dimensional article. The aluminum-containing encapsulation layer comprises an aluminide material, MCrAlY wherein M is cobalt, nickel, or a combination of cobalt and nickel, or TiAlCr.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Mark C. Morris, George Reimer, William F. Hehmann, Daira Legzdina, Richard Fox, Yiping Hu, Harry Lester Kington
  • Publication number: 20130341197
    Abstract: Methods for producing a high temperature oxidation and hot corrosion resistant MCrAlX coating on a superalloy substrate include applying an M-metal, chromium, and aluminum or an aluminum alloy comprising a reactive element to at least one surface of the superalloy component by electroplating at electroplating conditions below 100° C. in a plating bath thereby forming a plated component and heat treating the plated component.
    Type: Application
    Filed: February 6, 2012
    Publication date: December 26, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: James Piascik, Derek Raybould, Vincent Chung, George Reimer, Lee Poandl
  • Publication number: 20120156519
    Abstract: Methods for producing a high temperature oxidation resistant coating on a superalloy component and the coated superalloy component produced thereby are provided. Aluminum or an aluminum alloy is applied to at least one surface of the superalloy component by electroplating in an ionic liquid aluminum plating bath to form a plated component. The plated component is heat treated at a first temperature of about 600° C. to about 650° C. and then further heat treated at a second temperature of about 700° C. to about 1050° C. for about 0.50 hours to about two hours or at a second temperature of about 750° C. to about 900° C. for about 12 to about 20 hours.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: James Piascik, Derek Raybould, George Reimer
  • Publication number: 20100243464
    Abstract: Methods are provided for forming coatings on substrates. In an embodiment, a method includes forming a first metal layer on the substrate, the first metal layer comprising a first precious metal, electrodepositing an active element over the first metal layer to form an active element layer, the active element selected from the group consisting of yttrium, scandium, and a lanthanide series element, applying a second metal layer over the active element layer, the second metal layer consisting essentially of a metal selected from a group consisting of a second precious metal, nickel, and cobalt, heating the substrate including the first metal layer, the active element layer, and the second metal layer to form a diffusion-alloyed layer over the substrate, adding aluminum to the diffusion-alloyed layer, and heating the substrate to diffuse and react the aluminum with the diffusion-alloyed layer to form a modified precious metal aluminide coating on the substrate.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Devlin M. Gualtieri, Derek Raybould, Tom Strangman, George Reimer
  • Publication number: 20070184305
    Abstract: A quasi-single phase or single phase thick platinum nickel aluminide coating and methods for forming the coating over a nickel-based superalloy substrate are provided. The method includes the steps of forming a metal layer over a surface of the nickel-based superalloy substrate, the metal layer comprising platinum, growing a diffusion zone comprising a platinum nickel alloy layer from the metal layer and the nickel-based superalloy substrate, and subjecting the platinum nickel alloy to one or more aluminization cycles to transform the platinum nickel alloy into a platinum nickel aluminide coating having a platinum aluminide phase formed therein.
    Type: Application
    Filed: February 7, 2006
    Publication date: August 9, 2007
    Inventors: Murali Madhava, George Reimer, Amol Gholkar
  • Patent number: 7229701
    Abstract: The present invention provides a chromium and active elements modified platinum aluminide coating that may be used on a surface of a gas turbine engine component such as a turbine blade. The coating may be used as a protective coating that impedes the progress of corrosion, oxidation, and sulfidation in superalloy materials that comprise the substrate of the turbine blade. Additionally, the coating may be used as a bond coat onto which a thermal barrier coating is deposited. The presence of active elements as well as chromium and platinum provides improved corrosion, oxidation, and sulfidation resistance. The coating is applied using an electron beam physical vapor deposition. The coating is applied alternatively using selected sequential diffusion processing steps involving chromium, platinum and aluminum.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: June 12, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Murali Madhava, Timothy R. Duffy, Margaret Floyd, George Reimer
  • Publication number: 20060046091
    Abstract: The present invention provides a chromium and active elements modified platinum aluminide coating that may be used on a surface of a gas turbine engine component such as a turbine blade. The coating may be used as a protective coating that impedes the progress of corrosion, oxidation, and sulfidation in superalloy materials that comprise the substrate of the turbine blade. Additionally, the coating may be used as a bond coat onto which a thermal barrier coating is deposited. The presence of active elements as well as chromium and platinum provides improved corrosion, oxidation, and sulfidation resistance. The coating is applied using an electron beam physical vapor deposition. The coating is applied alternatively using selected sequential diffusion processing steps involving chromium, platinum and aluminum.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 2, 2006
    Inventors: Murali Madhava, Timothy Duffy, Margaret Floyd, George Reimer
  • Publication number: 20050265851
    Abstract: There is provided a method for applying a diffusion coating on a specific area of targeted industrial item such as a turbine blade. The method uses a covering material such as a tape or slurry to cover the area where it is desired that the diffusion occur, for example above the root area of a turbine blade. The tape material includes a metallic source such as chromium and a master alloy of active elements for diffusion. The covering material thus defines the localized patch that is to be coated. An activator if any, such as a halide activator, can be included in the tape or slurry. Alternatively, the activator can be included in the pack material. The method uses known pack cementation methods to complete the diffusive process. The method results in a diffusion coating over a specific area of the target item.
    Type: Application
    Filed: May 26, 2004
    Publication date: December 1, 2005
    Inventors: Murali Madhava, Margaret Floyd, George Reimer