Patents by Inventor George S. Golda

George S. Golda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6806052
    Abstract: An apparatus and system are provided for simultaneously analyzing a plurality of analytes anchored to microparticles. Microparticles each having a uniform population of a single kind of analyte attached are disposed as a substantially immobilized planar array inside of a flow chamber where steps of an analytical process are carried out by delivering a sequence of processing reagents to the microparticles by a fluidic system under microprocessor control. In response to such process steps, an optical signal is generated at the surface of each microparticle which is characteristic of the interaction between the analyte carried by the microparticle and the delivered processing reagent. The plurality of analytes are simultaneously analyzed by collecting and recording images of the optical signals generated by all the microparticles in the planar array.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 19, 2004
    Assignee: Lynx Therapeutics, Inc.
    Inventors: John Bridgham, Kevin P. Corcoran, George S. Golda, Michael C. Pallas, Sydney Brenner
  • Publication number: 20030077615
    Abstract: Abstract An apparatus and system are provided for simultaneously analyzing a plurality of analytes anchored to microparticles. Microparticles each having a uniform population of a single kind of analyte attached are disposed as a substantially immobilized planar array inside of a flow chamber where steps of an analytical process are carried out by delivering a sequence of processing reagents to the microparticles by a fluidic system under microprocessor control. In response to such process steps, an optical signal is generated at the surface of each microparticle which is characteristic of the interaction between the analyte carried by the microparticle and the delivered processing reagent. The plurality of analytes are simultaneously analyzed by collecting and recording images of the optical signals generated by all the microparticles in the planar array.
    Type: Application
    Filed: April 18, 2002
    Publication date: April 24, 2003
    Applicant: Lynx Therapeutics, Inc.
    Inventors: John Bridgham, Kevin P. Corcoran, George S. Golda, Michael C. Pallas, Sydney Brenner
  • Publication number: 20020137052
    Abstract: An apparatus and system are provided for simultaneously analyzing a plurality of analytes anchored to microparticles. Microparticles each having a uniform population of a single kind of analyte attached are disposed as a substantially immobilized planar array inside of a flow chamber where steps of an analytical process are carried out by delivering a sequence of processing reagents to the microparticles by a fluidic system under microprocessor control. In response to such process steps, an optical signal is generated at the surface of each microparticle which is characteristic of the interaction between the analyte carried by the microparticle and the delivered processing reagent The plurality of analytes are simultaneously analyzed by collecting and recording images of the optical signals generated by all the microparticles in the planar array.
    Type: Application
    Filed: July 17, 2001
    Publication date: September 26, 2002
    Applicant: Lynx Therapeutics, Inc.
    Inventors: John Bridgham, Kevin P. Corcoran, George S. Golda, Sydney Brenner, Michael C. Pallas
  • Publication number: 20020061529
    Abstract: An apparatus and system are provided for simultaneously analyzing a plurality of analytes anchored to microparticles. Microparticles each having a uniform population of a single kind of analyte attached are disposed as a substantially immobilized planar array inside of a flow chamber where steps of an analytical process are carried out by delivering a sequence of processing reagents to the microparticles by a fluidic system under microprocessor control. In response to such process steps, an optical signal is generated at the surface of each microparticle which is characteristic of the interaction between the analyte carried by the microparticle and the delivered processing reagent. The plurality of analytes are simultaneously analyzed by collecting and recording images of the optical signals generated by all the microparticles in the planar array.
    Type: Application
    Filed: July 17, 2001
    Publication date: May 23, 2002
    Applicant: Lynx Therapeutics, Inc.
    Inventors: John Bridgham, Kevin P. Corcoran, George S. Golda, Sydney Brenner, Michael C. Pallas
  • Publication number: 20020051992
    Abstract: An apparatus and system are provided for simultaneously analyzing a plurality of analytes anchored to microparticles. Microparticles each having a uniform population of a single kind of analyte attached are disposed as a substantially immobilized planar array inside of a flow chamber where steps of an analytical process are carried out by delivering a sequence of processing reagents to the microparticles by a fluidic system under microprocessor control. In response to such process steps, an optical signal is generated at the surface of each microparticle which is characteristic of the interaction between the analyte carried by the microparticle and the delivered processing reagent. The plurality of analytes are simultaneously analyzed by collecting and recording images of the optical signals generated by all the microparticles in the planar array.
    Type: Application
    Filed: July 17, 2001
    Publication date: May 2, 2002
    Applicant: Lynx Therapeutics, Inc.
    Inventors: John Bridgham, Kevin P. Corcoran, George S. Golda, Michael C. Pallas, Sydney Brenner
  • Patent number: 5443791
    Abstract: A liquid-handling instrument has a worksurface with registration for modular stations to support containers of liquid, pipette apparatus with a pipette tip coupled to a sensing circuit, a robotic translation system for moving the pipette tip, and a control system with an iconic user interface for programming and editing. A gauge block registered on the worksurface provides for calibration using the sensing tip, and register cavities on the worksurface provide for modular stations. There is a wash station fop the pipette tip on the worksurface. An automated laboratory based on the liquid-handling system has heating and cooling and a sealable incubation station as well as a magnetic separation station. Methods are disclosed using the apparatus to convey droplets of liquid, to aspirate with minimum tip contamination, to mix liquids in containers, and to validate the worksurface.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: August 22, 1995
    Assignee: Perkin Elmer - Applied Biosystems Division
    Inventors: G. Richard Cathcart, Thomas Brennan-Marquez, John A. Bridgham, George S. Golda, Harry A. Guiremand, Marianne Hane, Louis B. Hoff, Eric Lachenmeier, Melvyn N. Kronick, Douglas H. Keith, Paul E. Mayrand, Michael L. Metzker, William J. Mordan, Lincoln J. McBride, John Shigeura, Chen-Hanson Ting, Norman M. Whiteley