Patents by Inventor George S Tulevski

George S Tulevski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9620622
    Abstract: A method for manufacturing a field effect transistor includes chelating a molecular mask to a replacement metal gate in a field effect transistor. The method may further include forming a patterned dielectric layer on a bulk dielectric material and a gate dielectric barrier in one or more deposition steps. The method may include removing the molecular mask and exposing part of the gate dielectric barrier before depositing a dielectric cap that touches the gate dielectric barrier and the replacement metal gate.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: April 11, 2017
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Michael A. Guillorn, Balasubramanian Pranatharthiharan, George S. Tulevski
  • Patent number: 9543535
    Abstract: A carbon nanotube semiconductor device includes at least one carbon nanotube disposed on an insulator portion of a substrate. The at least one carbon nanotube includes a non-doped channel portion interposed between a first doped source/drain portion and a second doped source/drain portion. A first source/drain contact stack is disposed on the first doped source/drain portion and an opposing second source/drain contact stack is disposed on the second doped source/drain portion. A replacement metal gate stack is interposed between the first and second source/drain contact stacks, and on the at least one carbon nanotube. The first and second doped source/drain portions are each vertically aligned with an inner edge of the first and second contact stacks, respectively.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: January 10, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Patent number: 9543534
    Abstract: A carbon nanotube semiconductor device includes at least one carbon nanotube disposed on an insulator portion of a substrate. The at least one carbon nanotube includes a non-doped channel portion interposed between a first doped source/drain portion and a second doped source/drain portion. A first source/drain contact stack is disposed on the first doped source/drain portion and an opposing second source/drain contact stack is disposed on the second doped source/drain portion. A replacement metal gate stack is interposed between the first and second source/drain contact stacks, and on the at least one carbon nanotube. The first and second doped source/drain portions are each vertically aligned with an inner edge of the first and second contact stacks, respectively.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 10, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Publication number: 20160380218
    Abstract: A carbon nanotube semiconductor device includes at least one carbon nanotube disposed on an insulator portion of a substrate. The at least one carbon nanotube includes a non-doped channel portion interposed between a first doped source/drain portion and a second doped source/drain portion. A first source/drain contact stack is disposed on the first doped source/drain portion and an opposing second source/drain contact stack is disposed on the second doped source/drain portion. A replacement metal gate stack is interposed between the first and second source/drain contact stacks, and on the at least one carbon nanotube. The first and second doped source/drain portions are each vertically aligned with an inner edge of the first and second contact stacks, respectively.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 29, 2016
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Publication number: 20160380217
    Abstract: A carbon nanotube semiconductor device includes at least one carbon nanotube disposed on an insulator portion of a substrate. The at least one carbon nanotube includes a non-doped channel portion interposed between a first doped source/drain portion and a second doped source/drain portion. A first source/drain contact stack is disposed on the first doped source/drain portion and an opposing second source/drain contact stack is disposed on the second doped source/drain portion. A replacement metal gate stack is interposed between the first and second source/drain contact stacks, and on the at least one carbon nanotube. The first and second doped source/drain portions are each vertically aligned with an inner edge of the first and second contact stacks, respectively.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 29, 2016
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Publication number: 20160343899
    Abstract: A Schottky-barrier-reducing layer is provided between a p-doped semiconductor layer and a transparent conductive material layer of a photovoltaic device. The Schottky-barrier-reducing layer can be a conductive material layer having a work function that is greater than the work function of the transparent conductive material layer. The conductive material layer can be a carbon-material layer such as a carbon nanotube layer or a graphene layer. Alternately, the conductive material layer can be another transparent conductive material layer having a greater work function than the transparent conductive material layer. The reduction of the Schottky barrier reduces the contact resistance across the transparent material layer and the p-doped semiconductor layer, thereby reducing the series resistance and increasing the efficiency of the photovoltaic device.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana, George S. Tulevski, Ahmed Abou-Kandil, Hisham S. Mohamed, Mohamed Saad, Osama Tobail
  • Publication number: 20160308026
    Abstract: A method for manufacturing a field effect transistor includes chelating a molecular mask to a replacement metal gate in a field effect transistor. The method may further include forming a patterned dielectric layer on a bulk dielectric material and a gate dielectric barrier in one or more deposition steps. The method may include removing the molecular mask and exposing part of the gate dielectric barrier before depositing a dielectric cap that touches the gate dielectric barrier and the replacement metal gate.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 20, 2016
    Inventors: Damon B. Farmer, Michael A. Guillorn, Balasubramanian Pranatharthiharan, George S. Tulevski
  • Publication number: 20160293731
    Abstract: A method for manufacturing a field effect transistor includes chelating a molecular mask to a replacement metal gate in a field effect transistor. The method may further include forming a patterned dielectric layer on a bulk dielectric material and a gate dielectric barrier in one or more deposition steps. The method may include removing the molecular mask and exposing part of the gate dielectric barrier before depositing a dielectric cap that touches the gate dielectric barrier and the replacement metal gate.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Inventors: Damon B. Farmer, Michael A. Guillorn, Balasubramanian Pranatharthiharan, George S. Tulevski
  • Publication number: 20160260859
    Abstract: A Schottky-barrier-reducing layer is provided between a p-doped semiconductor layer and a transparent conductive material layer of a photovoltaic device. The Schottky-barrier-reducing layer can be a conductive material layer having a work function that is greater than the work function of the transparent conductive material layer. The conductive material layer can be a carbon-material layer such as a carbon nanotube layer or a graphene layer. Alternately, the conductive material layer can be another transparent conductive material layer having a greater work function than the transparent conductive material layer. The reduction of the Schottky barrier reduces the contact resistance across the transparent material layer and the p-doped semiconductor layer, thereby reducing the series resistance and increasing the efficiency of the photovoltaic device.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana, George S. Tulevski, Ahmed Abou-Kandil, Hisham S. Mohamed, Mohamed Saad, Osama Tobail
  • Patent number: 9428805
    Abstract: A technique is provided for forming a nanodevice for sequencing. A bottom metal contact is disposed at a location in an insulator that is on a substrate. A nonconducting material is disposed on top of the bottom metal contact and the insulator. A carbon nanotube is disposed on top of the nonconducting material. Top metal contacts are disposed on top of the carbon nanotube at the location of the bottom metal contact, where the top metal contacts are formed at opposing ends of the carbon nanotube at the location. The carbon nanotube is suspended over the bottom metal contact at the location, by etching away the nonconducting material under the carbon nanotube to expose the bottom metal contact as a bottom of a trench, while leaving the nonconducting material immediately under the top metal contacts as walls of the trench.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 30, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Patent number: 9419097
    Abstract: A method for manufacturing a field effect transistor includes chelating a molecular mask to a replacement metal gate in a field effect transistor. The method may further include forming a patterned dielectric layer on a bulk dielectric material and a gate dielectric barrier in one or more deposition steps. The method may include removing the molecular mask and exposing part of the gate dielectric barrier before depositing a dielectric cap that touches the gate dielectric barrier and the replacement metal gate.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: August 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Michael A. Guillorn, Balasubramanian Pranatharthiharan, George S. Tulevski
  • Patent number: 9409102
    Abstract: A method and system are disclosed for separating single-walled carbon nanotubes from double and multi-walled carbon nanotubes by using the difference in the buoyant density of Single-Walled versus Multi-Walled carbon nanotubes. In one embodiment, the method comprises providing a vessel with first and second solutions. The first solution comprises a quantity of carbon nanotubes, including single-walled carbon nanotubes and double and multi-walled carbon nanotubes. The single walled nanotubes have a first density, the double and multi-walled nanotubes having a second density. The second solution in the vessel has a third density between said first and second densities. The vessel is centrifuged to faun first and second layers in the vessel, with the second solution between said first and second layers. The single-walled carbon nanotubes are predominantly in the first layer, and the second and multi-walled carbon nanotubes are predominantly in the second layer.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ageeth A. Bol, George S. Tulevski
  • Patent number: 9371561
    Abstract: A technique is provided for forming a nanodevice for sequencing. A bottom metal contact is disposed at a location in an insulator that is on a substrate. A nonconducting material is disposed on top of the bottom metal contact and the insulator. A carbon nanotube is disposed on top of the nonconducting material. Top metal contacts are disposed on top of the carbon nanotube at the location of the bottom metal contact, where the top metal contacts are formed at opposing ends of the carbon nanotube at the location. The carbon nanotube is suspended over the bottom metal contact at the location, by etching away the nonconducting material under the carbon nanotube to expose the bottom metal contact as a bottom of a trench, while leaving the nonconducting material immediately under the top metal contacts as walls of the trench.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: June 21, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Publication number: 20160149016
    Abstract: A method for manufacturing a field effect transistor includes chelating a molecular mask to a replacement metal gate in a field effect transistor. The method may further include forming a patterned dielectric layer on a bulk dielectric material and a gate dielectric barrier in one or more deposition steps. The method may include removing the molecular mask and exposing part of the gate dielectric barrier before depositing a dielectric cap that touches the gate dielectric barrier and the replacement metal gate.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 26, 2016
    Inventors: Damon B. Farmer, Michael A. Guillorn, Balasubramanian Pranatharthiharan, George S. Tulevski
  • Publication number: 20160141501
    Abstract: A method of forming a structure having selectively placed carbon nanotubes, a method of making charged carbon nanotubes, a bi-functional precursor, and a structure having a high density carbon nanotube layer with minimal bundling. Carbon nanotubes are selectively placed on a substrate having two regions. The first region has an isoelectric point exceeding the second region's isoelectric point. The substrate is immersed in a solution of a bi-functional precursor having anchoring and charged ends. The anchoring end bonds to the first region to form a self-assembled monolayer having a charged end. The substrate with charged monolayer is immersed in a solution of carbon nanotubes having an opposite charge to form a carbon nanotube layer on the self-assembled monolayer. The charged carbon nanotubes are made by functionalization or coating with an ionic surfactant.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 19, 2016
    Inventors: Ali Afzali-Ardakani, Hongsik Park, George S. Tulevski
  • Publication number: 20160137605
    Abstract: A method of forming a structure having selectively placed carbon nanotubes, a method of making charged carbon nanotubes, a bi-functional precursor, and a structure having a high density carbon nanotube layer with minimal bundling. Carbon nanotubes are selectively placed on a substrate having two regions. The first region has an isoelectric point exceeding the second region's isoelectric point. The substrate is immersed in a solution of a bi-functional precursor having anchoring and charged ends. The anchoring end bonds to the first region to form a self-assembled monolayer having a charged end. The substrate with charged monolayer is immersed in a solution of carbon nanotubes having an opposite charge to form a carbon nanotube layer on the self-assembled monolayer. The charged carbon nanotubes are made by functionalization or coating with an ionic surfactant.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 19, 2016
    Inventors: Ali Afzali-Ardakani, Hongsik Park, George S. Tulevski
  • Patent number: 9331330
    Abstract: An electrode includes a conductive substrate and a plurality of conductive structures providing a compressible matrix of material. An active material is formed in contact with the plurality of conductive structures. The active material includes a volumetrically expanding material which expands during ion diffusion such that the plurality of conductive structures provides support for the active material and compensates for volumetric expansion of the active material to prevent damage to the active material.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 3, 2016
    Assignees: International Business Machines Corporation, Egypt Nanotechnology Center (EGNC)
    Inventors: Mostafa M. El-Ashry, Osama Tobail, George S. Tulevski
  • Patent number: 9324475
    Abstract: Transparent conducting electrodes include a doped single walled carbon nanotube film and methods for forming the doped single walled carbon nanotube (SWCNT) by solution processing. The method generally includes depositing single walled carbon nanotubes dispersed in a solvent and a surfactant onto a substrate to form a single walled carbon nanotube film thereon; removing all of the surfactant from the carbon nanotube film; and exposing the single walled carbon nanotube film to a single electron oxidant in a solution such that one electron is transferred from the single walled carbon nanotubes to each molecule of the single electron oxidant.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: April 26, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, EGYPT NANOTECHNOLOGY CENTER
    Inventors: Mostafa M. El-Ashry, Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski
  • Patent number: 9293365
    Abstract: The present invention relates generally to forming interconnects over contacts and more particularly, to a method and structure for filling interconnect trenches with a sacrificial filler material before removal of a hard mask layer to protect the liners of the contacts from damage during the removal process. A method is disclosed that may include: filling an opening in a dielectric layer above a contact and a contact liner with a sacrificial filler material, such that the contact liner is completely covered by the sacrificial filler material; removing a hard mask layer used to pattern and form the opening; and removing the sacrificial filler material from the opening selective to the dielectric layer, the contact liner, and the contact to form an interconnect trench.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Domingo A. Ferrer, Jim Shih-Chun Liang, Joyeeta Nag, Wei-tsu Tseng, George S. Tulevski
  • Publication number: 20150349264
    Abstract: A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. A method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
    Type: Application
    Filed: August 6, 2015
    Publication date: December 3, 2015
    Inventors: Ageeth A. Bol, Bhupesh Chandra, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, George S. Tulevski