Patents by Inventor George Saon

George Saon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10902843
    Abstract: Audio features, such as perceptual linear prediction (PLP) features and time derivatives thereof, are extracted from frames of training audio data including speech by multiple speakers, and silence, such as by using linear discriminant analysis (LDA). The frames are clustered into k-means clusters using distance measures, such as Mahalanobis distance measures, of means and variances of the extracted audio features of the frames. A recurrent neural network (RNN) is trained on the extracted audio features of the frames and cluster identifiers of the k-means clusters into which the frames have been clustered. The RNN is applied to audio data to segment audio data into segments that each correspond to one of the cluster identifiers. Each segment can be assigned a label corresponding to one of the cluster identifiers. Speech recognition can be performed on the segments.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dimitrios B. Dimitriadis, David C. Haws, Michael Picheny, George Saon, Samuel Thomas
  • Patent number: 10546575
    Abstract: Audio features, such as perceptual linear prediction (PLP) features and time derivatives thereof, are extracted from frames of training audio data including speech by multiple speakers, and silence, such as by using linear discriminant analysis (LDA). The frames are clustered into k-means clusters using distance measures, such as Mahalanobis distance measures, of means and variances of the extracted audio features of the frames. A recurrent neural network (RNN) is trained on the extracted audio features of the frames and cluster identifiers of the k-means clusters into which the frames have been clustered. The RNN is applied to audio data to segment audio data into segments that each correspond to one of the cluster identifiers. Each segment can be assigned a label corresponding to one of the cluster identifiers. Speech recognition can be performed on the segments.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: January 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dimitrios B. Dimitriadis, David C. Haws, Michael Picheny, George Saon, Samuel Thomas
  • Patent number: 10249292
    Abstract: Speaker diarization is performed on audio data including speech by a first speaker, speech by a second speaker, and silence. The speaker diarization includes segmenting the audio data using a long short-term memory (LSTM) recurrent neural network (RNN) to identify change points of the audio data that divide the audio data into segments. The speaker diarization includes assigning a label selected from a group of labels to each segment of the audio data using the LSTM RNN. The group of labels comprising includes labels corresponding to the first speaker, the second speaker, and the silence. Each change point is a transition from one of the first speaker, the second speaker, and the silence to a different one of the first speaker, the second speaker, and the silence. Speech recognition can be performed on the segments that each correspond to one of the first speaker and the second speaker.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dimitrios B. Dimitriadis, David C. Haws, Michael Picheny, George Saon, Samuel Thomas
  • Publication number: 20180166067
    Abstract: Audio features, such as perceptual linear prediction (PLP) features and time derivatives thereof, are extracted from frames of training audio data including speech by multiple speakers, and silence, such as by using linear discriminant analysis (LDA). The frames are clustered into k-means clusters using distance measures, such as Mahalanobis distance measures, of means and variances of the extracted audio features of the frames. A recurrent neural network (RNN) is trained on the extracted audio features of the frames and cluster identifiers of the k-means clusters into which the frames have been clustered. The RNN is applied to audio data to segment audio data into segments that each correspond to one of the cluster identifiers. Each segment can be assigned a label corresponding to one of the cluster identifiers. Speech recognition can be performed on the segments.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Dimitrios B. Dimitriadis, David C. Haws, Michael Picheny, George Saon, Samuel Thomas
  • Publication number: 20180166066
    Abstract: Speaker diarization is performed on audio data including speech by a first speaker, speech by a second speaker, and silence. The speaker diarization includes segmenting the audio data using a long short-term memory (LSTM) recurrent neural network (RNN) to identify change points of the audio data that divide the audio data into segments. The speaker diarization includes assigning a label selected from a group of labels to each segment of the audio data using the LSTM RNN. The group of labels comprising includes labels corresponding to the first speaker, the second speaker, and the silence. Each change point is a transition from one of the first speaker, the second speaker, and the silence to a different one of the first speaker, the second speaker, and the silence. Speech recognition can be performed on the segments that each correspond to one of the first speaker and the second speaker.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Dimitrios B. Dimitriadis, David C. Haws, Michael Picheny, George Saon, Samuel Thomas
  • Patent number: 9378464
    Abstract: A system and an article of manufacture for discriminative learning via hierarchical transformations, which includes obtaining a model of a first set of data, two or more data transformations, and a second set of data, evaluating the two or more data transformations to determine which data transformation will most effectively modify the second set of data to match the model, and selecting the data transformation that will most effectively modify the second set of data to match the model based on the evaluation.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: June 28, 2016
    Assignee: International Business Machines Corporation
    Inventors: Sasha P. Caskey, Dimitri Kanevsky, Brian Kingsbury, Tara N. Sainath, George Saon
  • Publication number: 20140032570
    Abstract: Techniques for discriminative learning via hierarchical transformations. A method includes obtaining a model of a first set of data, two or more data transformations, and a second set of data, evaluating the two or more data transformations to determine which data transformation will most effectively modify the second set of data to match the model, and selecting the data transformation that will most effectively modify the second set of data to match the model based on the evaluation.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sasha P. Caskey, Dimitri Kanevsky, Brian Kingsbury, Tara N. Sainath, George Saon
  • Publication number: 20140032571
    Abstract: A system and an article of manufacture for discriminative learning via hierarchical transformations, which includes obtaining a model of a first set of data, two or more data transformations, and a second set of data, evaluating the two or more data transformations to determine which data transformation will most effectively modify the second set of data to match the model, and selecting the data transformation that will most effectively modify the second set of data to match the model based on the evaluation.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sasha P. Caskey, Dimitri Kanevsky, Brian Kingsbury, Tara N. Sainath, George Saon
  • Publication number: 20050119885
    Abstract: In a speech recognition system, the combination of a log-linear model with a multitude of speech features is provided to recognize unknown speech utterances. The speech recognition system models the posterior probability of linguistic units relevant to speech recognition using a log-linear model. The posterior model captures the probability of the linguistic unit given the observed speech features and the parameters of the posterior model. The posterior model may be determined using the probability of the word sequence hypotheses given a multitude of speech features. Log-linear models are used with features derived from sparse or incomplete data. The speech features that are utilized may include asynchronous, overlapping, and statistically non-independent speech features. Not all features used in training need to appear in testing/recognition.
    Type: Application
    Filed: November 28, 2003
    Publication date: June 2, 2005
    Inventors: Scott Axelrod, Sreeram Balakrishnan, Stanley Chen, Yuging Gao, Ramesh Gopinath, Hong-Kwang Kuo, Benoit Maison, David Nahamoo, Michael Picheny, George Saon, Geoffrey Zweig