Patents by Inventor Georges M. Robert

Georges M. Robert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9556025
    Abstract: In accordance with one or more embodiments, a tubular catalyst-containing reactor system is provided. The system includes a housing and a vaporizer unit in the housing comprising a helically wound tubular assembly for receiving and at least partially vaporizing a liquid chemical reactant stream. A reformer unit in the housing receives a vaporized chemical reactant stream from the vaporizer unit. The reformer unit comprises a helically wound tubular assembly connected to and positioned coaxially relative to the helically wound tubular assembly of the vaporizer unit. The helically wound tubular assembly of the reformer unit contains a catalyst for catalyzing formation of gas product stream from the vaporized chemical reactant stream. A burner unit heats the vaporizer unit and the reformer unit. The burner unit receives a fuel stream and an air stream and produces a flame generally inside the helically wound tubular assemblies of the vaporizer unit and the reformer unit.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 31, 2017
    Assignee: HydrIP, LLC
    Inventors: Charles W. Krueger, George M. Roberts, Edward G. Kelrikh, Michael Y. Leshchiner
  • Publication number: 20130343985
    Abstract: In accordance with one or more embodiments, a tubular catalyst-containing reactor system is provided. The system includes a housing and a vaporizer unit in the housing comprising a helically wound tubular assembly for receiving and at least partially vaporizing a liquid chemical reactant stream. A reformer unit in the housing receives a vaporized chemical reactant stream from the vaporizer unit. The reformer unit comprises a helically wound tubular assembly connected to and positioned coaxially relative to the helically wound tubular assembly of the vaporizer unit. The helically wound tubular assembly of the reformer unit contains a catalyst for catalyzing formation of gas product stream from the vaporized chemical reactant stream. A burner unit heats the vaporizer unit and the reformer unit. The burner unit receives a fuel stream and an air stream and produces a flame generally inside the helically wound tubular assemblies of the vaporizer unit and the reformer unit.
    Type: Application
    Filed: December 6, 2012
    Publication date: December 26, 2013
    Applicant: HY9 CORPORATION
    Inventors: Charles W. Krueger, George M. Roberts, Edward G. Kelrikh, Michael Y. Leshchiner
  • Patent number: 6251734
    Abstract: A method of manufacturing semiconductor components includes etching two trenches (105, 106, 805, 806, 1205, 1206) into a surface of a substrate (101, 801, 1201), lining the two trenches (105, 106, 805, 806, 1205, 1206) with an electrically insulative layer (107, 807, 1207) that is never completely removed from a first one of the two trenches (105, 106, 805, 806, 1205, 1206), and simultaneously filling the two trenches (105, 106, 805, 806, 1205, 1206) with a material wherein the material is never completely removed from the first one of the two trenches (105, 106, 805, 806, 1205, 1206) and wherein the second one of the two trenches (105, 106, 805, 806, 1205, 1206) becomes electrically coupled to the substrate (101, 801, 1201).
    Type: Grant
    Filed: July 1, 1998
    Date of Patent: June 26, 2001
    Assignee: Motorola, Inc.
    Inventors: Gordon M. Grivna, Georges M. Robert
  • Patent number: 6117547
    Abstract: A PTFE fiber that is adapted to be sewn at high speeds. The fiber has a toughness greater than about 0.36 grams per denier (g/d). A range for the toughness is from about 0.36 to about 1.01 g/d, with a preferred range being from about 0.50 to about 0.80 g/d. The toughness of the inventive PTFE fiber is most preferably about 0.60 g/d. The inventive fiber has a peak engineering stress greater than about 1.6 g/d and a break strain greater than about 15.5 percent. A preferred range for the peak engineering stress is from about 3.0 g/d to about 5.0 g/d, and a preferred range for the break strain is from about 20 percent to about 50 percent. Most preferably, the peak engineering stress is about 4.4 g/d, and the break strain is about 24 percent. In another aspect, this invention provides a process for making a fiber that involves providing a PTFE fiber and heating the PTFE fiber to a temperature of from about 300.degree. C. to about 500.degree. C.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: September 12, 2000
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Thomas Patrick Kelmartin, Jr., George M. Roberts, John W. Dolan, Raymond B. Minor
  • Patent number: 6114035
    Abstract: A PTFE fiber that is adapted to be sewn at high speeds. The fiber has a toughness greater than about 0.36 grams per denier (g/d). A range for the toughness is from about 0.36 to about 1.01 g/d, with a preferred range being from about 0.50 to about 0.80 g/d. The toughness of the inventive PTFE fiber is most preferably about 0.60 g/d. The inventive fiber has a peak engineering stress greater than about 1.6 g/d and a break strain greater than about 15.5 percent. A preferred range for the peak engineering stress is from about 3.0 g/d to about 5.0 g/d, and a preferred range for the break strain is from about 20 percent to about 50 percent. Most preferably, the peak engineering stress is about 4.4 g/d, and the break strain is about 24 percent. In another aspect, this invention provides a process for making a fiber that involves providing a PTFE fiber and heating the PTFE fiber to a temperature of from about 300.degree. C. to about 500.degree. C.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: September 5, 2000
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Thomas Patrick Kelmartin, Jr., George M. Roberts, John W. Dolan, Raymond B. Minor
  • Patent number: 6071452
    Abstract: A PTFE fiber that is adapted to be sewn at high speeds. The fiber has a toughness greater than about 0.36 grams per denier (g/d). A range for the toughness is from about 0.36 to about 1.01 g/d, with a preferred range being from about 0.50 to about 0.80 g/d. The toughness of the inventive PTFE fiber is most preferably about 0.60 g/d. The inventive fiber has a peak engineering stress greater than about 1.6 g/d and a break strain greater than about 15.5 percent. A preferred range for the peak engineering stress is from about 3.0 g/d to about 5.0 g/d, and a preferred range for the break strain is from about 20 percent to about 50 percent. Most preferably, the peak engineering stress is about 4.4 g/d, and the break strain is about 24 percent. In another aspect, this invention provides a process for making a fiber that involves providing a PTFE fiber and heating the PTFE fiber to a temperature of from about 300.degree. C. to about 500.degree. C.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: June 6, 2000
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Thomas Patrick Kelmartin, Jr., George M. Roberts, John W. Dolan, Raymond B. Minor
  • Patent number: 5989709
    Abstract: A PTFE fiber that is adapted to be sewn at high speeds. The fiber has a toughness greater than about 0.36 grams per denier (g/d). A range for the toughness is from about 0.36 to about 1.01 g/d, with a preferred range being from about 0.50 to about 0.80 g/d. The toughness of the inventive PTFE fiber is most preferably about 0.60 g/d. The inventive fiber has a peak engineering stress greater than about 1.6 g/d and a break strain greater than about 15.5 percent. A preferred range for the peak engineering stress is from about 3.0 g/d to about 5.0 g/d, and a preferred range for the break strain is from about 20 percent to about 50 percent. Most preferably, the peak engineering stress is about 4.4 g/d, and the break strain is about 24 percent. In another aspect, this invention provides a process for making a fiber that involves providing a PTFE fiber and heating the PTFE fiber to a temperature of from about 300.degree. C. to about 500.degree. C.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: November 23, 1999
    Assignee: Gore Enterprises Holdings, Inc.
    Inventors: Thomas Patrick Kelmartin, Jr., George M. Roberts, John W. Dolan, Raymond B. Minor