Patents by Inventor Georgeta Masson

Georgeta Masson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795247
    Abstract: Provided herein are polyolefin dispersants, as well as methods for producing polyolefin dispersants. The polyolefin dispersants can be defined by the formula below where Rx is cationic initiator residue; Ra is a polyolefin group; R1 and R2 are each, independently in each —(CR1R2) unit, H, alkyl, alkoxy, or alkylaryl; R3 and R4 are each, independently, H, alkyl, or alkoxy; m is an integer from 1 to 20; n is an integer from 1 to 6; r is an integer from 1 to 4; Y is a polyvalent amine linker comprising one or more tertiary amines, wherein the polyvalent amine linker does not include a primary amine or a secondary amine; and A is absent, or comprises a dispersive moiety.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: October 24, 2023
    Assignee: The University of Southern Mississippi
    Inventors: Robson F. Storey, Travis P. Holbrook, C. Garrett Campbell, Georgeta Masson
  • Patent number: 11495703
    Abstract: The light conversion efficiency of a solar cell is enhanced by using an optical downshifting layer in cooperation with a photovoltaic material. The optical downshifting layer converts photons having wavelengths in a supplemental light absorption spectrum into photons having a wavelength in the primary light absorption spectrum of the photovoltaic materiaL The cost effectiveness and efficiency of solar cells platforms can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic materiaL The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response to the photovoltaic materiaL The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 8, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita N. Kurtin, Steven M. Hughes, Alex C. Mayer, Oun-Ho Park, Georgeta Masson
  • Publication number: 20220085254
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 17, 2022
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Patent number: 11274181
    Abstract: Provided herein are polyimide dispersants, as well as methods for producing polyimide dispersants. The polyimides can be defined by the formula below wherein A, individually for each occurrence, represents a cyclic diimide moiety represented by the structure below where B represents a cyclic moiety substituted with a first cyclic imide group and a second cyclic imide group; Y, individually for each occurrence, represents a bivalent linking group; L, individually for each occurrence, is absent or represents a cyclic imide group; R, individually for each occurrence, represents a polymeric tail; and n is an integer from 1 to 20.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 15, 2022
    Assignee: CHEVRON ORONITE COMPANY LLC
    Inventors: David Morgan, Roland Ma, Georgeta Masson
  • Patent number: 11205741
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: December 21, 2021
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Publication number: 20210242358
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Application
    Filed: September 28, 2020
    Publication date: August 5, 2021
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita N. Kurtin, Steven M. Hughes, Alex C. Mayer, Oun-Ho Park, Georgeta Masson
  • Patent number: 11053435
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 6, 2021
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Publication number: 20210189030
    Abstract: Provided herein are polyolefin dispersants, as well as methods for producing polyolefin dispersants. The polyolefin dispersants can be defined by the formula below where Rx is cationic initiator residue; Ra is a polyolefin group; R1 and R2 are each, independently in each —(CR1R2) unit, H, alkyl, alkoxy, or alkylaryl; R3 and R4 are each, independently, H, alkyl, or alkoxy; m is an integer from 1 to 20; n is an integer from 1 to 6; r is an integer from 1 to 4; Y is a polyvalent amine linker comprising one or more tertiary amines, wherein the polyvalent amine linker does not include a primary amine or a secondary amine; and A is absent, or comprises a dispersive moiety.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 24, 2021
    Inventors: Robson F. Storey, Travis P. Holbrook, C. Garrett Campbell, Georgeta Masson
  • Patent number: 10875946
    Abstract: Provided herein are polyolefin dispersants, as well as methods for producing polyolefin dispersants. The polyolefin dispersants can be defined by the formula below where Rx is cationic initiator residue; Ra is a polyolefin group; R1 and R2 are each, independently in each —(CR1R2) unit, H, alkyl, alkoxy, or alkylaryl; R3 and R4 are each, independently, H, alkyl, or alkoxy; m is an integer from 1 to 20; n is an integer from 1 to 6; r is an integer from 1 to 4; Y is a polyvalent amine linker comprising one or more tertiary amines, wherein the polyvalent amine linker does not include a primary amine or a secondary amine; and A is absent, or comprises a dispersive moiety.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: December 29, 2020
    Assignees: Chevron Oronite Company LLC, The University of Southern Mississippi
    Inventors: Robson F. Storey, Travis P. Holbrook, C. Garrett Campbell, Georgeta Masson
  • Patent number: 10840403
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: November 17, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita N. Kurtin, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Georgeta Masson
  • Patent number: 10815446
    Abstract: Disclosed is a dispersant composition, suitable for use in lubricating oils. The dispersant composition is a reaction product of (i) a polyalkenyl succinimide post-treated with a post-treating agent selected from the group consisting of an organic carbonate, an epoxide, a lactone, a hydroxyaliphatic carboxylic acid, and combinations thereof; and (ii) an acylating agent.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: October 27, 2020
    Assignee: CHEVRON ORONITE COMPANY LLC
    Inventors: William Raymond Ruhe, Jr., Georgeta Masson, Abran Costales, Kirk Nass, John Robert Miller, Young A. Chang
  • Publication number: 20190284314
    Abstract: Provided herein are polyolefin dispersants, as well as methods for producing polyolefin dispersants. The polyolefin dispersants can be defined by the formula below where Rx is cationic initiator residue; Ra is a polyolefin group; R1 and R2 are each, independently in each —(CR1R2) unit, H, alkyl, alkoxy, or alkylaryl; R3 and R4 are each, independently, H, alkyl, or alkoxy; m is an integer from 1 to 20; n is an integer from 1 to 6; r is an integer from 1 to 4; Y is a polyvalent amine linker comprising one or more tertiary amines, wherein the polyvalent amine linker does not include a primary amine or a secondary amine; and A is absent, or comprises a dispersive moiety.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 19, 2019
    Inventors: Robson F. Storey, Travis P. Holbrook, C. Garrett Campbell, Georgeta Masson
  • Patent number: 10396228
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 27, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun-Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20190144743
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Publication number: 20190085129
    Abstract: Provided herein are polyimide dispersants, as well as methods for producing polyimide dispersants. The polyimides can be defined by the formula below wherein A, individually for each occurrence, represents a cyclic diimide moiety represented by the structure below where B represents a cyclic moiety substituted with a first cyclic imide group and a second cyclic imide group; Y, individually for each occurrence, represents a bivalent linking group; L, individually for each occurrence, is absent or represents a cyclic imide group; R, individually for each occurrence, represents a polymeric tail; and n is an integer from 1 to 20.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: David Morgan, Roland Ma, Georgeta Masson
  • Patent number: 10202543
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: February 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Publication number: 20180342652
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Application
    Filed: August 1, 2018
    Publication date: November 29, 2018
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Publication number: 20180334635
    Abstract: Disclosed is a dispersant composition, suitable for use in lubricating oils. The dispersant composition is a reaction product of (i) a polyalkenyl succinimide post-treated with a post-treating agent selected from the group consisting of an organic carbonate, an epoxide, a lactone, a hydroxyaliphatic carboxylic acid, and combinations thereof; and (ii) an acylating agent.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 22, 2018
    Inventors: William Raymond Ruhe, JR., Georgeta Masson, Abran Costales, Kirk Nass, John Robert Miller, Young A. Chang
  • Patent number: 10074780
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 11, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Publication number: 20180138340
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Application
    Filed: September 21, 2017
    Publication date: May 17, 2018
    Inventors: Juanita N. Kurtin, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Georgeta Masson