Patents by Inventor Georgios Alexandrakis

Georgios Alexandrakis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971405
    Abstract: In one aspect, molecular sensors and methods of making molecular sensors are described herein. In some embodiments, such a sensor comprises a first layer having a dual nanohole structure and a second layer having at least one nanopore. In some embodiments, the first and second layer define a chip of the sensor. In another aspect, methods of sensing are described herein, which in some embodiments comprise (i) providing a test sample comprising complexed and/or non-complexed biomolecules; (ii) contacting the test sample with the first layer of the molecular sensor; (iii) irradiating the dual nanohole structure of the sensor with a beam of electromagnetic radiation; (iv) optically trapping the biomolecules in the dual nanohole structure and measuring a surface plasmon resonance; (v) applying an electric field across the nanopore of the sensor; and (vi) measuring change in current across the nanopore during one or more translocation events of the biomolecules.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 30, 2024
    Assignee: BOARD OF REGENTS, THE UNIVERSITY TEXAS SYSTEM
    Inventors: Georgios Alexandrakis, Jon Weidanz, Muhammad Usman Raza, Sai Santosh Sasank Peri
  • Publication number: 20200393456
    Abstract: In one aspect, molecular sensors and methods of making molecular sensors are described herein. In some embodiments, such a sensor comprises a first layer having a dual nanohole structure and a second layer having at least one nanopore. In some embodiments, the first and second layer define a chip of the sensor. In another aspect, methods of sensing are described herein, which in some embodiments comprise (i) providing a test sample comprising complexed and/or non-complexed biomolecules; (ii) contacting the test sample with the first layer of the molecular sensor; (iii) irradiating the dual nanohole structure of the sensor with a beam of electromagnetic radiation; (iv) optically trapping the biomolecules in the dual nanohole structure and measuring a surface plasmon resonance; (v) applying an electric field across the nanopore of the sensor; and (vi) measuring change in current across the nanopore during one or more translocation events of the biomolecules.
    Type: Application
    Filed: December 11, 2018
    Publication date: December 17, 2020
    Inventors: Georgios ALEXANDRAKIS, Samir M. IQBAL, Saiful CHOWDHURY, Jon WEIDANZ, Muhammad Usman RAZA, Liang-Chieh MA
  • Patent number: 9545223
    Abstract: Disclosed is a functional NIRS imaging system including an elastomeric cap, a set of transmit optical fibers and a set of receive optical fibers terminating on the inside surface of the elastomeric cap. A pair of light sources combines to produce a collimated light beam at two wavelengths. An optical modulation system, converts the light beam into a plurality of probe light beams, modulates the plurality of probe light beams and directs each probe light beam into a transmit fiber. An optical detection system accepts scattered photons from subcutaneous tissue underneath the elastomeric cap as a plurality of collected light beams and converts them into a time series of electronic images, stores the electronic images into the memory and processes the electronic images using. The system displays the resulting image on a display as a hemoglobin oxygen saturation map.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 17, 2017
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Duncan MacFarlane, Chester Wildey, Georgios Alexandrakis, Bilal Khan
  • Publication number: 20120232402
    Abstract: Disclosed is a functional NIRS imaging system including an elastomeric cap, a set of transmit optical fibers and a set of receive optical fibers terminating on the inside surface of the elastomeric cap. A pair of light sources combines to produce a collimated light beam at two wavelengths. An optical modulation system, converts the light beam into a plurality of probe light beams, modulates the plurality of probe light beams with a set of pseudo-orthogonal codes and directs each probe light beam into a transmit fiber. An optical detection system accepts scattered photons from subcutaneous tissue underneath the elastomeric cap as a plurality of collected light beams and converts them into a time series of electronic images, stores the electronic images into the memory and processes the electronic images using the pseudo-orthogonal codes. The system displays the resulting image on a display as a hemoglobin oxygen saturation map.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 13, 2012
    Inventors: Duncan MacFarlane, Chester Wildey, Georgios Alexandrakis, Bilal Khan